
RESEARCH ARTICLE

A spatial method to calculate small-scale

fisheries effort in data poor scenarios

Andrew Frederick Johnson1*, Marcia Moreno-Báez1,2, Alfredo Giron-Nava1,
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Abstract

To gauge the collateral impacts of fishing we must know where fishing boats operate and

how much they fish. Although small-scale fisheries land approximately the same amount of

fish for human consumption as industrial fleets globally, methods of estimating their fishing

effort are comparatively poor. We present an accessible, spatial method of calculating the

effort of small-scale fisheries based on two simple measures that are available, or at least

easily estimated, in even the most data-poor fisheries: the number of boats and the local

coastal human population. We illustrate the method using a small-scale fisheries case study

from the Gulf of California, Mexico, and show that our measure of Predicted Fishing Effort

(PFE), measured as the number of boats operating in a given area per day adjusted by the

number of people in local coastal populations, can accurately predict fisheries landings in

the Gulf. Comparing our values of PFE to commercial fishery landings throughout the Gulf

also indicates that the current number of small-scale fishing boats in the Gulf is approxi-

mately double what is required to land theoretical maximum fish biomass. Our method is

fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in

small-scale fisheries. This new method provides an important first step towards estimating

the fishing effort of small-scale fleets globally.

Introduction

Global marine fisheries are under pressure from increasing demands for protein, driven by

rapidly growing human populations [1,2]. Many commercial stocks remain either fully or

over-exploited and show continued declines [3], whilst rules and regulations governing them

continue to tighten, driving new fisheries development [4]. Fisheries biomass is often extracted

from areas only known by fishers themselves, and is recorded at the point of landing or where

the first sale of the catch is made. For this reason, fishing locations often remain elusive, off

the radar and difficult to police [5]. Understanding where fish are caught has never been

more important. The amount of fishing (the effort) and the area over which fishing potentially

takes place (the range) are critical measures for successful fisheries management and making
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realistic predictions about the wider ecological consequences of fishing [6], although for some

specific fishery scenarios this is not always the case [7]. These measures provide important

details for management, particularly spatially-explicit approaches such as protected areas or

fisheries closures. They also allow more accurate estimates of the economics of fishing regard-

ing time at sea and fuel usage [8,9] and aid in understanding some of the social factors involved

in driving fisheries [10].

Landed catch biomass data are now widely recorded for commercial fisheries and are a cen-

tral component in the design of many fisheries management strategies. Whether or not they

are a useful measure of stock status, however, remains undecided [11]. Effort data for fisheries

remain comparatively sparse and are often concentrated around the industrial fleet, relying on

electronic logbook-ID-type tracking systems such as VMS (Vessel Monitoring System) and

AIS (Automatic Identification System) [12]. Methods of calculating fishing effort ultimately

depend on the intended applications of such information [13] and different resolutions of data

will yield different descriptions of effort [14]. Although this highlights the importance of

understanding why such measures are needed, data availability will often be the primary factor

determining which measures and calculations can be made [6]. Considering the economic and

the multi-national interests often involved, fisheries privacy and data release issues are com-

monly more of an impediment than the existence of data. Small-scale fisheries often lack data

on the number of vessels, gear types used and landing records. This makes the calculation of

fishing effort difficult and may bring into question the accuracy of any such results gained for

such fleets [13].

The current gap in knowledge for small-scale fishing effort needs addressing if the collateral

impacts of such fisheries are to be quantitatively estimated. The importance of understanding

these impacts is reiterated when we consider that landings for human consumption from

small-scale fisheries are approximately equal to that of the industrial fleet [15]. As McCluskey

and Lewison note, “Small scale does not necessarily mean small impact” [13]. The approaches

that estimate fishing effort for small-scale fisheries are currently labor- and data-intensive,

require close cooperation with the fishing sector and involve considerable sampling error and

subjectivity, as they do for many data-poor fishery scenarios [16].

The term “effort” encompasses a broad range of meanings and complexities, from nominal

measures such as durations of extraction and amounts or sizes of extractive gear to effective

measures that standardize effort such as the rate of fish capture or the Catch Per Unit of Effort

(CPUE). Such detailed information of a system is often unavailable. For this reason, instead of

attempting to design a method that estimates effort based on many case-specific assumptions,

we present a new method to estimate fishing effort across broad spatial scales, accounting for

data limitations commonly encountered for small-scale fisheries. We did not address temporal

scales in the example presented here because of a lack of data, which is a common issue in

many other data-poor settings. To illustrate our method we use small-scale fisheries from the

Gulf of California, Mexico as a case-study.

We use the term Predicted Fishing Effort (PFE) to describe our new measure, as it estimates

the amount of fishing activity (based on the number of boats) within an estimated fishing

range. We hypothesize that the human population and the numbers of fishing boats together

determine the fishing effort in a given area and the subsequent amount of fish landed locally.

PFE is therefore measured as the number of boats per day in an area (in this study a grid cell of

500 km2). If PFE estimates are compared to total commercial fisheries landings, our method

can also be used to 1) predict the present amount of fish biomass extraction from areas of

previously unknown activity; 2) evaluate the potential for future growth in a fishery; and 3)

provide an estimate of the most cost-effective number of fishing boats per area without dimin-

ishing returns.

Calculating small-scale fisheries effort
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Methods

Unless the relationship between local human populations and fishing boats are perfectly auto-

correlated and track each other linearly and normally (i.e. more humans always mean more

boats and vice versa), both measures are necessary to calculate a reliable estimate of PFE. By

accounting for both measures, areas with high numbers of boats but low numbers of local pop-

ulations overall (e.g. isolated fishing camps), or areas where there may be low numbers of

boats close to extremely high local populations (e.g. major cities with relatively few per-capita

fishing vessels) are accounted for.

Data origin

A schematic flow-through diagram illustrating each step in the process of designing and cal-

culating PFE is presented in Fig 1. Human population data were obtained from Mexico’s National

Institute of Statistics and Geography (INEGI) [17]. These data were geo-referenced by commu-

nity. A 5 km buffer inland from the coastline was created to select the majority of the populous

Fig 1. Schematic flow-through diagram describing each stage of the method used to calculate Predicted Fishing Effort (PFE). Method runs

clockwise from (1) thru (5).

https://doi.org/10.1371/journal.pone.0174064.g001
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within the coastal communities likely to have direct links to the local fishing industry (Fig 2A).

The number and location of every coastal in-water small-scale fishing boat in the Gulf was calcu-

lated from three different sources: two coastal over-flight surveys conducted by the World Wildlife

Fund in 2006 [18] and an estimate using coastal images of the Gulf taken from Google Earth

in 2009 [19] (Fig 2B). Small-scale boats were defined as any traditional Mexican panga fishing ves-

sel. These are out-board engine-driven, open vessels up to approximately 27 feet (8.2 meters) in

length, usually operated by a maximum of 3 crew members with little to no mechanical fishing

equipment on board. It is noteworthy that no actual field research was undertaken and therefore

no ethics clearance or permits were necessary for data collection. All the data used and produced

in these analyses are open source and available from http://datamares.ucsd.edu/eng/projects/

fisheries/spatial-distribution-of-potential-fishing-effort-in-the-gulf-of-california-mexico/.

Spatial analysis and data distribution

There is a substantial difference between the areas fished by the small-scale (coastal) and the

industrial (off-shore) fleets within the Gulf of California [20]. The distances travelled by fishers to

fishing grounds can therefore vary widely and are determined by factors including target species,

time of year, coastline complexity, water depth and weather. The average linear distance travelled

by small-scale fishers to their fishing ground in the upper Gulf, was 75 km between 2009 and 2016

Fig 2. Map of the case-study area, the Gulf of California, used to design the model of Predicted Fishing Effort (PFE). Original locations of raw data

used: a) locations at which human population census data were used (n = 153 cells), b) locations in which images of boats were counted (n = 163 cells), c)

location of fishing offices (n = 31 cells).

https://doi.org/10.1371/journal.pone.0174064.g002
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[21]. We used this measure to create a buffer delineating the area fished by the small-scale fleet,

within which to calculate the PFE. The resultant area that could potentially be fished (herein

referred to as the area of influence) corresponded well to other published estimates of small-scale

vessel activity in the Gulf of California [22]. In ideal scenarios where data are not limited, such

areas of influence can be calculated on a case-by-case basis and based on accurate estimates of

average areas of activity. Over-conservative buffer areas that are too small will concentrate PFE

estimates, whilst buffer areas that are too large will spread PFE estimates too thinly.

To calculate a measure of effort spread throughout the area of influence we created a grid

and, within the center of each cell, placed estimated values of the number of boats and human

population. We used a conservative grid cell size of 500 km2 cells based on the estimated

potential fishing area per panga vessel in the Gulf [23]. Only grid cells that intersected with the

area of influence were included for further analysis. Values of population and boats were

assigned to the centroid of each corresponding cell (herein referred to as the raw data). Data

on human population size and the number of boats covered a total of 133 grid cells. We used

kernel density estimates (KDEs) to spread the data for the human population, the number of

boats and the mean total annual catch across the full area of influence (565 grid cells of 500

km2). We computed the KDEs with the Spatial Analyst Extension in Model Builder ESRI Arc-

GIS 10.2 by using the following function [24]:

f uð Þ ¼
1

nh

Xn

i¼1

KðuÞ

Where n represents the total number of input points, h represents the search radius (fishing

range) of fishers from the departure point (set as 75 km), K represents the Kernel function

(described below) and u represents the input variable (human population, number of boats or

total catch (tonnes)). The output of this function has the same units as the input variable, but

normalized per unit area (cell-size parameter = 1 km2). The Kernel function is described as:

K uð Þ ¼
3

4
1 � u2ð Þ jx � xij � h

KðuÞ ¼ 0 jx � xij > h

This function describes that for each data point with coordinates xi from the original data-

set, the KDE assigns densities around it according to a quadratic distribution (with a maxi-

mum at the original location of the data point) and up to a distance equal to h (75 km) in the

interpolated grid with coordinates x for each cell. We transformed the 1 km2 resolution data

into the 565 grid cells of 500 km2 by calculating the mean KDE of each cell (S1 Fig). All the

analyses were performed using a Universal Transverse Mercator (UTM) projection.

To build a model of PFE based on human population and the number of boats, we hypothe-

sized that there was a significant relationship between these two variables. To test this hypothe-

sis we ran an Ordinary Least Squares (OLS) regression. This was undertaken for both the raw

data (n = 133) and the post-KDE data matrix (n = 565) to ensure KDE did not alter the rela-

tionship between the variables. Significant slope and intercept statistics were then used to

build the final PFE model in which PFE was a function of human population and the number

of boats. In certain cases or locations, this relationship may not be significant, for example, in

very remote or transitory fishing scenarios where the local human population may not relate

to the number of boats in the area. To understand if a location may deviate from this linear

norm of more population equals more boats, simple regression analyses between the two mea-

sures can be used. Outlying cases can either be noted and investigated further, or if justified,

Calculating small-scale fisheries effort
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excluded from further analysis. In cases with many such non-normal cases, different non-lin-

ear regression models may be used to see if a significant relationship between human popula-

tions and the number of boats exists. Final significant models should to be incorporated into

the PFE estimate using the scaling coefficient of the chosen model (see results for example). If

no such relationship is found, then our method should not be used to calculate PFE. We do,

however, encourage researchers in data-poor scenarios to persist in their calculations of fishing

effort and note that the more that is known about how a fishery and how fishers behaves, the

better equipped a team is to investigate ways to accurately estimate fishing effort. The suitabil-

ity of the human population and boat estimates within areas of influence should be thoroughly

evaluated a priori.

Designing and validating an estimation of effort

The relationship between boats and human population. The intensity of fishing de-

pends, in principle, on the demand for fish whether for consumption (local markets) or re-

venue (non-local markets) purposes. In theory, two variables can consequently be used as

indicators of this demand, and hence proxies for PFE: (a) the number of boats in each segment

of the coast, and (b) the human population concentrated along the same coastal sector. How-

ever, these two variables are in all likelihood related to each other, so they cannot be used as

additive predictors of PFE as they may in turn be aliased. We therefore first analyzed how the

number of boats scaled-up as the coastal population increases, using allometric equations (or

power functions, of the type boats = k.populationm, or, in logarithmic form, log(boats) = log(k)

+ m. log(population)). We found a significant, positive relationship between the logarithm of

the number of fishing boats and the logarithm of coastal human population, both pre- (r2 =

0.40, F1,131 = 89.51, p< 0.001, m = 0.34 ± 0.03) and post- (r2 = 0.65, F1,563 = 1039, p< 0.001)

KDE (Fig 3A and 3B), yielding a scaling coefficient m = 0.42 ± 0.013 (we added a value of 1 to

both the number of boats and the number of inhabitants to avoid the indetermination of log-

zero).

The slope for the least squares regression in Fig 3B represents the log-log relationship for

the allometric scaling between the number of boats and the population: log(boats) = 0.432 ×
log(population). We forced the intercept through the origin given that the absence of people or

boats in a location would result in no fishing activity. The equation can be rewritten as log

(boats) = log(population0.43). Further, by taking the exponent of both sides, it can be written in

a power function form as boats = population0.43. That is, the population-driven number of

boats in any sector of the coast can be predicted by the population elevated to an exponent of

0.432.

Estimating PFE. The number of boats counted (boats) and the number of boats estimated

from the population (population0.43) were linearly related with slope = 1. We therefore com-

bined both variables into a single interaction term to estimate the PFE as the geometric mean

of both estimates (PFE = (boats × population0.43)0.5). Because both estimates are aliased, com-

bining them into a single variable reduces the degrees of freedom of the predictors, making the

resulting model more parsimonious. By using a geometric mean, we make sure that extreme

cases (high numbers of boats with low coastal populations or vice versa) are accounted for

without skewing PFE values. Finally, because in the previous section we showed that boats and

population0.43 are linearly related and hence additive in log-form, it follows that in exponent

form they should be combined as multipliers. The unit of PFE is therefore the number of boats

adjusted by the number of people in local coastal populations. In this case, PFE is calculated

using the mean boat count from the three daily snapshots of boat activity in the Gulf. Overall,

Calculating small-scale fisheries effort
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PFE is measured as the adjusted number of boats per day in a given area (in this case a grid cell

of 500km2).

Validating the estimation of PFE. To validate our measure of PFE we used vessel-track-

ing data from the upper Gulf of California region. A local collaboration with fishers using

hand-held GPS trackers [25] provided us with real travel-tracks of fishing vessels for an aver-

age fishing day in the area. From these tracks, we calculated the total number of times fishing

vessels fished (see S2 Fig) inside the same grid cell layer that we used for the PFE calculation.

We then compared our estimated values of PFE to these real fishing event totals for each grid

cell in the upper Gulf of California. OLS linear regression and a Pearson’s correlation of these

values were used to determine if a linear relationship between the real and the predicted mea-

sures exist and to note the significance of the correlation between the two variables.

Fig 3. Relationship between human coastal population and number of small scale fishing boats pre

(A) and post (B) kernel density estimation. Points represent the raw data, solid lines the fitted model and

dashed lines the 95% confidence intervals (see also S1A and S1B Fig for mapped post KDE data).

https://doi.org/10.1371/journal.pone.0174064.g003
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Predicting landings from PFE

We collated annual fisheries data (2001–2013) from the Gulf of California from the Mexican

National Commission of Fisheries (CONAPESCA). These data included all small-scale fisher-

ies landings from 31 fishing offices across the whole Gulf (Fig 2C), which collectively register

commercial landings from five states: Baja California, Baja California Sur, Sonora, Sinaloa,

and Nayarit. These fishing offices are located at major ports and important fishing communi-

ties, and provide the most detailed fisheries data available. An independent database that

included monthly landings for around 300 species of fish and invertebrates from all 31 offices

was obtained from CONAPESCA headquarters in Mazatlan, Sinaloa, Mexico. Fishers are

either affiliated to cooperatives or work for private companies that operate based on licenses

or concessions granted by CONAPESCA, per resource. All information generated by this fed-

eral entity (e.g., human resources, infrastructure, the number of licenses by fishing resource) is

included in the National Fisheries Register.

KDE was used to estimate spatially explicit values of mean total annual fisheries landings

data (tonnes per 500 km2) between 2001 and 2013 for each cell within the area of influence.

By comparing PFE to mean total annual landings of all species in the region, we hypothesized

that our model of PFE could be used to accurately predict total fisheries landings in the Gulf of

California. We tested the relationship with a non-linear least squares regression. It should be

noted that because we only consider mean total annual fisheries landings, the PFE estimate

is fishery-type independent. If differences between types of fishery need investigation, the

method would need to separate different types of fishing boats in the boat counts, calculate a

separate PFE for each with fishery-specific assumptions on the range of the fishing boats and

separate catch by fishery when comparing predicted landings to PFE estimates.

Fisheries catch is total weight of fish landed, hence the variable is related to fish and/or

human demographic processes. In terms of differential calculus, a per capita rate of change is

equal to the rate of change of the logarithm of the variable ((1/y) dy/dx = d ln(y)/dx). We there-

fore first explored the relationship between PFE and log(catch), to look at the relative change

in catch as PFE increases. Once the log model was defined and tested, we transformed it into

its arithmetic form to make predictions about expected catch given a certain PFE in any given

sector of the coast. The final model (catch = K � e-b/PFE) was fitted to the data using non-linear

regression with multiplicative error estimations. To avoid the influence of spatial autocorrela-

tion in our model parameters estimation, we performed 500 random draws of 250 data points

each from the PFE and the catch data. For each draw we fitted a logistic curve and estimated

K, b and their respective 95% confidence intervals. None of the evaluated fits from the draws

showed significant spatial autocorrelation (Mantel test). The final parameters and confidence

intervals were calculated as the mean of the 500 estimates generated from the random draws.

To approximate normality and homogenize variances, all data was log10 (x+1) transformed

after KDE was applied. All models were run using R (2016) and the lm and nlm packages.

Results

We estimated that at any one time there were approximately 17,839 ± 109.42 (standard error

of the mean) fishing pangas operating in the coastal waters of the Gulf (between 2006 and

2009). A total of 1,399,951 people lived in coastal communities within 5 km of the coastline in

2010 [17], the majority of them in the 31 cities with fishing offices reporting to CONAPESCA.

In 2008, the Mexican National Institute of Statistics reported that 56,113 people (4% of the

total coastal population surrounding the Gulf of California) earned profits directly from the

fisheries and aquaculture sector in the Gulf of California. Assuming 2 to 3 fishers work per

panga, this represents 64% to 95% of this sector.

Calculating small-scale fisheries effort
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The final PFE estimates for the Gulf of California (Fig 4) suggest that fishing effort was

highest close to highly populated human settlements on the coast and/or areas where the num-

ber of fishing vessels was high. The highest PFE values spread from the Guaymas (in the

north) to Mazatlán (in the south) along the Sonoran and Sinaloan coastline (eastern side of the

Gulf of California). La Paz and Cabo San Lucas, the largest cities in this region located towards

the south of the Baja California Peninsula, had high values of PFE. San Felipe and Santa Clara

in the upper Gulf of California also had high PFE values because of the high numbers of fishing

boats in these communities compared with the size of their local populations.

Does PFE relate to catch?

The relationship between PFE and log(catch) was asymptotic, in which the relative rate of

change (the slope of the fitted trend) decreased as PFE increased, of the type log(catch) = log

(K) –b/PFE, where K is the maximum total catch and b is a scaling or slope parameter describ-

ing how fast total catch approaches K as PFE increases (Fig 5A). Clearly, as PFE increases total

catch approaches K, while as PFE decreases total catch approaches zero.

The fit between PFE and mean total annual catch for the arithmetic model was highly sig-

nificant (r2 = 0.57; p< 0.001) with parameter values K = 2204 tonnes per 500 km2 per year

(95% CI [1451, 3629]) and b = 47.0 (95% CI [31.9, 67.0]; Fig 5B). The fit supports our hypothe-

sis that the use of human population and the number of boats to create a model of PFE can

predict fisheries landings in the Gulf of California, whilst accounting for situations that deviate

from the linear relationship commonly assumed between local population and the number of

boats (small populations with relatively high numbers of boats and large populations with rela-

tively few boats). While PFE has no maximum value (i.e., mathematically it can grow indefi-

nitely), the predicted total catch is bounded between zero and K. The fitted function does not

show uniform variances; rather, the variability of the relationship between PFE and total catch

increases considerably as PFE grows, exacerbating uncertainty that investing in more boats

will increase landings and profits.

The increase in total catch starts to plateau at PFE values of> 23.5 boats per 500km2,

highlighting the importance of considering K as the maximum total catch per grid cell per

year. This inflexion point seen in Fig 5B occurs at total catch values of 298 tonnes per 500 km2

per year. After this point, the rate of increase of total catch per number of boats begins to pla-

teau. This suggests that the number of boats at any moment required to reach total catch levels

with no further, significant increase in total catch is approximately 23.5 per 500km2. Extrapo-

lating this further to the total area of influence (the area we predict is utilized by small-scale

fishers in the Gulf = 565 cells = 565�500 = 282,500 km2), diminishing catch returns begin

when the number of pangas reaches 13,277 at any given moment. This value should, however,

be taken with caution as it implies that all areas have the same historical level of fishing. It is

much more plausible that different areas have historically different levels of fishing and are

therefore at different levels of stock status. On the premise that some of the sites have experi-

enced some level of fishing before our data were collected and are not in a pristine, non-fished

condition, the extrapolated value likely overestimates the number of boats required to produce

a level of catch at the inflection point of the model.

It should be noted that we validated the PFE model by testing our PFE values against fishing

event values from the upper Gulf of California, where we had access to real tracking informa-

tion for the small-scale fleet in the area (Fig 6A). OLS regression and a Pearson’s correlation

between our estimated PFE values and the real fishing frequency per cell showed a highly sig-

nificant relationship (r2 = 0.43; p< 0.001, ρ = 0.65, df = 28) (Fig 6B). Two points that lay out-

side of the 95% prediction limits of the regression were identified as grid cells in which local
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Fig 4. The Predicted Fishing Effort (PFE) presented in 500 km2 grid cells (n = 565). The unit of PFE is the number of

boats adjusted by the number of people in local coastal populations.

https://doi.org/10.1371/journal.pone.0174064.g004

Calculating small-scale fisheries effort

PLOS ONE | https://doi.org/10.1371/journal.pone.0174064 April 13, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0174064.g004
https://doi.org/10.1371/journal.pone.0174064


fishers stop to clean fish on their way back to port, thus replicating the same movement as at

the start of a fishing event.

Discussion

Estimating fishing effort is a necessary requisite for the successful management of marine fish-

eries. An almost ubiquitous problem with small-scale fisheries is that unless boats are fitted

with tracking devices, once they depart on fishing trips, they are for all practical purposes

untraceable [13]. By using KDE and the relationship between the local population and the

number of boats, we present a new method of estimating the amount of fishing effort within a

Fig 5. Relationship between Predicted Fishing Effort (# of boats per 500 km2) and mean total annual

catch. In logarithmic form (A) and arithmetic form (B). Points represent raw data (one value per 500 km2 grid

cell), solid lines are the fitted non-linear models, the dashed lines are the 95% prediction intervals of the fit,

and the outer dotted lines show one standard deviation for the regression residuals. Note the funnel-shaped

errors: as PFE increases so does dispersion in the data.

https://doi.org/10.1371/journal.pone.0174064.g005
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given area, when supplementary data regarding the fishery are limited or non-existent. In the

study area used to build our estimate of fishing effort, PFE was highest in areas of high popula-

tion density, but also in areas with high numbers of fishing boats relative to local human popu-

lations. When incorporating data on locally landed catch, our PFE estimate can also be used to

broadly assess the overall efficacy of growth of a small-scale fishery and predict the catch from

areas where catch data are unavailable but information on the number of boats and the human

population is accessible. Based on our estimates, at any one time in the Gulf of California there

were 4,562 more panga vessels operating than the maximum number (13,277) estimated to

produce total catches without diminishing returns. We show that the small-scale fishing fleet is

at over capacity considering the amount of fish recorded in official catch reports.

Similar methods to the one we present here could also be used to build models that apply to

other natural resource extractions that exhibit predictive relationships between local human

populations and the number of production units (e.g. boats, diggers, machines etc.) used in the

extractive activity, as well as those between the resource extracted and the number of production

units measured. Our new method is aimed as a starting point for researchers working in data-

poor scenarios tasked with calculating metrics of fishing effort. However, many assumptions

and considerations must be acknowledged before the method can be applied in other areas.

Considerations

The design of our model and the use of the PFE to predict catch and evaluate fisheries growth

is based on two significant positive relationships: 1) human population versus the number of

boats and 2) the PFE versus the total catch. Satisfying these relationships is a valid assumption for

fisheries [16] and to our knowledge there is no literature that suggests a lack of support for the

Fig 6. Map of the upper Gulf of California showing fishing track lines of small-scale fishing vessels (A) and the relationship between PFE per cell

and fishing frequency per cell (B). Asterisks denote outliers, solid line represents the fitted model and broken lines represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0174064.g006
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hypothesis that increased coastal human populations generally lead to increased numbers of fish-

ing vessels. An increased catch as a result of increased effort is a common, reasonable assumption

which is widely supported until a system is overexploited and a stock begins to collapse [26].

Although our model only requires two simple measures, how these are derived may have a

significant bearing on the outputs from the method. For example, the accuracy of estimates for

the number of boats is likely to vary widely depending on how such boat-count data are col-

lected. In our example, we benefited from aerial survey estimates, which are unlikely to be avail-

able in many small-scale fishery scenarios. Observer data for moored boats and boats within site

of land are the most probable methods of boat number estimation in many cases. We believe

that using additional, reliably sourced data to calculate mean values is a more robust method

than using single year data values. For this reason, we calculated a mean of 3 estimates of the

number of boats spanning 4 years, as well as more than a decade of catch data to estimate the

total mean annual catch per unit area (tonnes / 500km2 / year). Our final PFE estimates are

therefore a better general reflection of fishing effort and its relationship to mean annual total

landed catch per area for the Gulf than if we were to rely on single-value estimates. If increased

temporal accuracy is required for an effort estimate, it will be necessary to collect data on fishing

boats, human population and biomass landed within the time period for which estimates are

required. The accuracy and potential error associated with each of these variables, and the

amount of fish landed should still, however, always be thoroughly acknowledged.

The method we present assumes a reasonable knowledge of the mean distance travelled by

fishers during an average trip and the extent of local human communities likely to be closely

involved with local small-scale fishing fleets. Our validation method benefited from high reso-

lution, voluntary tracking data supplied by fishers [21] and the isolated and discrete coastal

communities along the Baja California peninsula. Such a scenario is rare, but approximate esti-

mates of distances travelled by fishers can be calculated by time at sea in conjunction with

additional knowledge of fishing behavior and vessel range, perhaps gleaned through simple

questionnaires [27]. It is important to note that by extrapolating our validation from a specific

location (the Upper Gulf) to the whole Gulf, we missed potential differences in the productiv-

ity or fishing activity of different areas. An ideal scenario would be to have multiple sets of

tracking data from all over the Gulf. This, however was not available and, as with much of our

approach, the idea was to make a best attempt considering such data-limited scenarios.

As a model estimate, our PFE should be applied and interpreted with a degree of caution

based on the aforementioned assumptions as well as the following limitations. The method

does not account for protected areas. Protected areas, however, can easily be demarcated when

defining the overall area of influence. Additionally, only using small-scale boats in our calcula-

tion of PFE excluded industrial fisheries from our estimates. Conclusions made regarding the

collateral impacts of local fisheries should only be drawn for the fleet for which boat estimates

were taken and should acknowledge activity from those vessels not included in boat number

estimates built into the primary model. Addressing these limitations and assumptions is an

area that will likely prove fruitful in further developing the method to increase its accuracy and

reliability. The method will also benefit from more road testing in places with different types

of fisheries, economic strategies and regulatory environments. Having said this, we believe

that our PFE estimates for the Gulf of California accurately captures the effort of the small-

scale fleet [28,29].

Fishing effort in the Gulf of California

By building a model to estimate PFE we were able to estimate and visualize where small-scale

fishers are most active in the Gulf of California. Comparison of PFE estimates to total landed
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catch data showed that future investment in the Gulf’s fisheries may not be economically or

ecologically viable. Assuming consistent landed values of fish, the catch plateau at around 23.5

boats per 500 km2 per day and indicated there may be little economic sense in adding more

boats close to, or past this point in many areas of the Gulf. In areas with PFE values over 23.5,

economic and ecological maxima may have already been reached. Increasing fishing in these

areas will likely yield minimal additional landings while increasing economic costs and dam-

age to exploited stocks and local ecosystems. This means that more biomass per grid cell is

being removed than we built into the model. Fisheries in the areas of the Gulf with high PFE

values are therefore likely to underperform, like many other global fisheries. In total, we esti-

mate that 17,839 small-scale boats operated at any given moment in the Gulf between 2006

and 2009, 34% more than would produce maximum total catch without diminished returns.

This value increases to 88%, almost double over capacity, when considering more recent

estimates (2010) of total boats operating (25,000 boats approx. [30]). We therefore clearly dem-

onstrated overcapacity in the Gulf’s small-scale fishing fleet. Our estimates are also highly con-

servative as they do not account for a growing fleet [30], illegal or unreported fisheries, bycatch

or the ecosystem impacts of the commercial fleet, all of which will affect standing stock bio-

mass. Future fisheries growth in the Gulf of California should therefore be addressed very care-

fully with a long-term outlook that accounts for ecological sustainability, economic efficiency

and the effort of the local fishing fleets.

Conclusions

We have presented a new method that allows small-scale fisheries effort to be estimated based

on simple measures attainable, in even the most data-poor scenarios. If the same step-by-step

methodology is used, all assumptions backed by robust data and limitations acknowledged,

this method will facilitate predicting fishing effort for other data-poor fisheries. Estimates of

human population are now commonplace and easily attainable as are estimates of landed

catch in FAO-type databases [31], albeit at regional and national scales. We foresee the main

data limitation coming from estimates of the number of fishing boats present in a given area.

New, high-resolution satellite technologies appear the best way to address this issue in areas

where accurate estimates may be difficult to otherwise calculate. When images from these tech-

nologies become easily accessible and available in all areas, the challenge will then be to source

workforces or automated methods to make counts of the boats. Resultant effort estimates will

prove important in highlighting areas that experience high fisheries impacts, and places that

may be candidates for protection. Although we do not suggest that our model is exhaustive

and fully incorporates all variability in natural and human systems, we believe it is a robust

and valid start to elucidating the fishing effort of small-scale fisheries. This new method of

effort estimation moves us away from data-intensive and laborious methods of investigating

this important measure. Our method predicts the ecological impacts of increasingly concen-

trated fishing efforts, as well as the economic potential for future expansion. We hope that our

PFE method can shed some light on the effects of small-scale fisheries globally. This will bene-

fit management and conservation decisions if presented objectively and in a timely manner,

particularly in data-poor scenarios.

Supporting information

S1 Fig. Map of the case-study area, the Gulf of California, used to design the model of Pre-

dicted Fishing Effort (PFE). A) Human population data (raw n = 153) and B) vessel density

data (raw n = 163) following Kernel Density Estimation spatial extrapolation presented in 500

km2 grid cells (n = 565). BC = Baja California, BCS = Baja California Sur, SON = Sonora,
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SIN = Sinaloa, and NAY = Nayarit.

(TIF)

S2 Fig. Classification of point data generated by a GPS data-logger using the speed to iden-

tify where fishing gear is potentially deployed and retrieved in the upper gulf of California for

(A) gillnets and (B) trawlers. An example of a fishing event is highlighted in the zoomed boxes.

(DOCX)
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fornia, México. 2012.

24. Silverman BW. Density estimation in action. Density Estimation for Statistics and Data Analysis.

Springer US; 1986. pp. 120–158. https://doi.org/10.1007/978-1-4899-3324-9_6

Calculating small-scale fisheries effort

PLOS ONE | https://doi.org/10.1371/journal.pone.0174064 April 13, 2017 16 / 17

https://doi.org/10.1111/j.1467-2979.2012.00460.x
https://doi.org/10.1111/j.1467-2979.2012.00460.x
https://doi.org/10.1371/journal.pone.0014735
https://doi.org/10.1371/journal.pone.0014735
http://www.ncbi.nlm.nih.gov/pubmed/21408090
https://doi.org/10.1016/j.fishres.2004.12.007
https://doi.org/10.1111/j.1467-2979.2012.00475.x
https://doi.org/10.1111/j.1467-2979.2012.00475.x
https://doi.org/10.1139/f2011-090
https://doi.org/10.1577/M01-228AM
https://doi.org/10.1577/M01-228AM
https://doi.org/10.1073/pnas.0912091107
https://doi.org/10.1073/pnas.0912091107
https://doi.org/10.1016/j.fishres.2009.03.013
https://doi.org/10.1093/icesjms/fsq010
https://doi.org/10.1093/icesjms/fsq010
https://doi.org/10.1111/j.1467-2979.2008.00283.x
https://doi.org/10.1111/j.1467-2979.2008.00283.x
https://doi.org/10.1111/j.1523-1739.2008.00978.x
http://www.ncbi.nlm.nih.gov/pubmed/18637910
https://doi.org/10.1371/journal.pone.0014451
http://www.ncbi.nlm.nih.gov/pubmed/21206903
http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/cpv2010/
http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/cpv2010/
http://awsassets.panda.org downloads rep_tamanio_distribucion_flotas_pesqueras_080710.pdf
http://awsassets.panda.org downloads rep_tamanio_distribucion_flotas_pesqueras_080710.pdf
https://doi.org/10.1016/j.pocean.2007.01.013
http://datamares.ucsd.edu/eng/projects/trackers/
http://datamares.ucsd.edu/eng/projects/trackers/
https://doi.org/10.1007/978-1-4899-3324-9_6
https://doi.org/10.1371/journal.pone.0174064


25. Erisman BE, Paredes GA, Plomozo-Lugo T, Cota-Nieto JJ, Hastings PA, Aburto-Oropeza O. Spatial

structure of commercial marine fisheries in Northwest Mexico. ICES Journal of Marine Science. 2011;

68: 564–571. https://doi.org/10.1093/icesjms/fsq179

26. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, et al. Rebuilding Global Fisheries. Sci-

ence. American Association for the Advancement of Science; 2009; 325:578–585. https://doi.org/10.

1126/science.1173146

27. Bastardie F, Nielsen JR, Ulrich C, Egekvist J, Degel H. Detailed mapping of fishing effort and landings

by coupling fishing logbooks with satellite-recorded vessel geo-location. Fisheries Research. Elsevier

B.V; 2010; 106: 41–53. https://doi.org/10.1016/j.fishres.2010.06.016

28. Erisman BE, Paredes GA, Plomozo-Lugo T, Cota-Nieto JJ, Hastings PA, Aburto-Oropeza O. Spatial

structure of commercial marine fisheries in Northwest Mexico. ICES Journal of Marine Science. 2011;

68: 564–571. https://doi.org/10.1093/icesjms/fsq179

29. Aburto-Oropeza O, Ezcurra E, Moxley J, Sánchez-Rodrı́guez A, Mascareñas-Osorio I, Sánchez-Ortiz

C, et al. A framework to assess the health of rocky reefs linking geomorphology, community assem-

blage, and fish biomass. Ecological Indicators. Elsevier Ltd; 2015; 52: 353–361. https://doi.org/10.1016/

j.ecolind.2014.12.006

30. Cisneros-Mata MA. The Importance of Fisheries in the Gulf of California and Ecosystem-Based Sus-

tainable Co-Management for Conservation. In: Brusca RC, editor. The Gulf of California.

2010. pp. 119–135.

31. FAO Yearbook—Fishery and Aquaculture Statistics 2012. 2014: 1–105.

Calculating small-scale fisheries effort

PLOS ONE | https://doi.org/10.1371/journal.pone.0174064 April 13, 2017 17 / 17

https://doi.org/10.1093/icesjms/fsq179
https://doi.org/10.1126/science.1173146
https://doi.org/10.1126/science.1173146
https://doi.org/10.1016/j.fishres.2010.06.016
https://doi.org/10.1093/icesjms/fsq179
https://doi.org/10.1016/j.ecolind.2014.12.006
https://doi.org/10.1016/j.ecolind.2014.12.006
https://doi.org/10.1371/journal.pone.0174064

