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Abstract 

Non-centred Principal Components Analysis (NPCA) ordinates sites and species simultaneously, and can be 
solved either by direct iteration or by eigenvector calculation. The weight of  sites and species in the analysis 
is proportional to their overall abundance. Because of  this, the method is not susceptible to distortion by 
rare species, as is the case with Reciprocal Averaging (RA). Detrending techniques can also be applied to 
this method to eliminate arch effects. 

When NPCA was tried with field data, it produced ordination axes that were significantly associated to 
independently measured environmental variables. In contrast, RA failed to produce axes related to environ- 
mental factors, even after the main rare species had been eliminated from the analysis. 

Abbreviations: NPCA Non-centred Principal Components Analysis; RA Reciprocal Averaging 

Introduction 

It is usually accepted that weighted averages ordi- 
nation methods, including Reciprocal Averaging 
(RA; Hill, 1973, 1974), and the derived Detrended 
Correspondence Analysis (DCA; Hill & Gauch, 
1980), have a "considerable superiority" over Prin- 
cipal Component  Analysis (PCA) when the analy- 
sis of  floristic data is considered (Gauch, 1982). 
The advantages seem to lie in the fact that (a) RA 
and DCA can be solved by direct iteration, and (b) 
environmental gradients with nonlinear species 
responses are recovered better by weighted averages 
ordination than by PCA (Gauch, 1982). In this 
paper it is argued that non-centred, non- 
standardised principal component  analysis 
(NPCA; Noy-Meir, 1973) can often give better 
floristic ordinations than weighted averages 

methods. It is shown that direct iteration and 
detrending techniques can also be applied to 
NPCA. 

Methods 

NPCA: TWo-way matrix scoring as an ordination 
procedure 

Probably the simplest eigenvector ordination of  a 
floristic data matrix can be achieved with a 
straightforward two-way scoring system. If an ini- 
tial vector of  site scores ordinating the sites along 
any real or assumed axis is given, the corresponding 
species scores can be calculated as the weighted 
sum of  the scores of  the sites where the species is 
found, such that 





makes no difference between loadings for attributes 
and positions for individuals, the scores for both  
rows and columns being defined in the same scale. 
The main difference f rom centred, or centred and 
standardised, PCA is that  N P C A  cannot be visual- 
ised exclusively as an axis rotation for the site clus- 
ter around its centroid in species space. It is a 
procedure that ordinates simultaneously the un- 
t ransformed site cluster in species-space and the 
untransformed species cluster in site-space. 

In this method the scores for the first axis will 
be all positive (or zero in some cases), as this axis 
extracts the dispersion of  the data cluster with re- 
spect to the origin. Subsequent axes will extract the 
residual dispersion, i.e. approximately variation 
about  the centroid. Noy Meir (1973) has demon- 
strated that, if  there are disjunctions or near- 
disjunctions in the data set (i.e. if there are two or 
more distinct and separate submatrices), more than 
one asymmetric axis will appear. In this sense, 
N P C A  helps to detect disjunct clusters in the data, 
which form distinct floristic sets with few inter- 
mediate or transitional sites. 

In NPCA,  the weight o f  each species is propor-  
tional to its total abundance. For a similar site dis- 
tribution, species with higher abundances are given 
more extreme scores than species with lower abun- 
dances. This means that, implicitly, the method 
considers the more abundant  species to be more 
reliable indicators of  environment-induced floristic 
variation than the rarer species. The main advan- 
tage of  this method lies in its lack of  sensitivity to 
rare species. 

Reciprocal averaging 

RA can also be described as a reciprocal scoring 
system, but in this case the scores are averaged by 
the row (species or sites) totals. The main advan- 
tage of  this procedure over N P C A  is that  the aver- 
aging (i.e. standardising by row totals) removes the 
effect o f  total abundances from the analysis. In RA 
the site score is an index of  its position along the 
floristic gradient, independently of  the total site 
abundance. Likewise, the species score can be 
regarded as an index reflecting the mean position 
of  the species distribution along the site gradient, 
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with independence of  the overall species abundance 
or the amplitude of  its distribution. In fact, RA 
calculates the species-scores by standardising the 
weighted sum of  site-scores by the species total 

n n 

= E aij yj / ~ aij p x i  j 

and standardises site-scores by site-totals 

s S 

P YJ = ~ a i j x i /  ~i aij 

n s 
I f  we define ai. = ~ aij, and a.j = E i a O, then the 

standardisation matrices R = diag(1/ai.) and C = 
diag (1/a j) can be defined, such that 

p x  = R A y ,  and (7) 

p y  = C A ' x ,  (8) 

where p is, again, a scale factor. The complete 
eigenvector solution can be derived from these 
equations as 

) , x  = R A C A ' x  = S x ,  or as (9) 

X y  = C A ' R A y  = Q y ,  (10) 
where S = R A C A '  is the (s x s) species similari, 
ty matrix, and Q = C A ' R  A is the (n × n) site 
similarity matrix (note that, as with PCA, the prob- 
lem can be solved by direct iteration or by calculat- 
ing the eigensolutions of  the similarity matrices). 
Both matrices are non-symmetric,  i.e. the similarity 
of  species i compared to species k is different to the 
similarity of  species k in relation to species i. 

Sik = [~. (aij akj / aj)] / ai. (11) 
Jn 

Ski = ~ (aij akj / a.j)] / ak. (12) 
J 

If, say, species i is rare and species k is abundant  

(i.e. ai. < < ak.) then, obviously, sik > > Ski. That  
is, the rare species will show a high similarity with 
the frequent species, but the latter will have a low 
similarity with the former. Intuitively, this is an in- 
teresting and rarely discussed property of  RA. It 
means that species restricted to only one site share 
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all of  their distribution with widespread species, 
while widespread species share only a small frac- 
tion of  their ecological variation with restricted 
species. Greenacre (1984) has shown that RA can 
also be interpreted as a singular value decomposi- 
tion problem and, if the last axes are dropped, 
results in a least-squares approximation of  the data 
matrix. The largest RA eigensolution is h~ = 1, 
both x I and Yl being vectors of  ones (Hill, 1973, 
1974; Greenacre, 1984). This first RA axis is a trivi- 
al solution equivalent to the first asymmetric axis 
in NPCA, in this case all sites and species having 
equal values. 

In RA, because every species has equal weights, 
the final position of  a species on the ordination 
axes depends on the mean of  its distribution, in- 
dependently of  its total abundance or of  its dis- 
tributional amplitude. This makes RA sensitive to 
the occurrence of  rare species (i.e. species with low 
totals which usually occur in very few sites). 

A test o f  the methods  on field data 

The data from a floristic matrix (100 species x 110 
sites) obtained at the Pinacate Desert in NW 
Sonora, Mexico, was used as a mean to compare 
the efficiency of  both methods (NPCA and RA) in 
generating floristics axes which could be statistical- 
ly related to environmental data (for a detailed 
description of  the area see Ezcurra et al., 1987). The 
whole data matrix was subjected to both NPCA 
and RA. The relationship between the ordination 
axes and nine environmental variables (altitude, 
landform, soil unit, surface rockiness, rockiness 
class, bulk rockiness, electrical conductivity, 07o 
clay, 070 sand) was analysed through an additive 
step-wise linear regression procedure. Quadratic 
terms (allowing for non-linearity)were also tried in 
the regression function. Discrete variables (land- 
form, soil unit, and rockiness class) were included 
in the analysis by decomposing them into binary 
dummy variables (Draper & Smith, 1981). The step- 
wise procedure was continued while the addition of  
new variables to the polynomial model decreased 
the probability (P) of  the variance ratio (F) test. 
The complete matrix was analysed first, and a 

masked analysis (eliminating disjunct sites and rare 
species) was performed afterwards. 

Complete analysis 

NPCA. The reciprocal scoring analysis showed 
some sites with zero scores on the first axis, indicat- 
ing disjunctions in the data set. Two asymmetric 
components (axes 3 and 6) were subsequently ex- 
tracted. While axis 1 showed high scores for typical 
inland desert sites (and species), axis 3 separated 
riparian sites, and axis 6 showed high scores for 
coastal sites with halophytic species. In this desert, 
coastal halophytic vegetation, riparian sites and in- 
land desert vegetation form disjunct floristic sub- 
sets with few transitional sites. The other, symmet- 
ric, axes (2, 4 and 5) revealed the variation within 
the main data cluster (inland desert), a problem 
which will be discussed in the next section. The 
regression model showed axis 1 to be highly as- 
sociated (P < 0.001) with inland desert soils. Axis 
3 was significantly associated (P < 0.001) with 
riparian landforms. Axis 6, the third asymmetric 
component,  showed a strong association (P < 
0.001) with saltflats. 

Reciprocal Averaging. RA failed to detect the dis- 
junctions in the data and concentrated the analysis 
on the distribution of  "rare" species. Most axes 
separated only one or two sites (possessing the rare 
species) from the rest of  the cluster. In some cases, 
rare species distinguished truly rare or a-typical 
sites; but in many other cases sites which were 
clearly similar to a larger cluster in soil type, land- 
form and floristic composition were placed at the 
extreme of  a gradient solely because of  the presence 
of  an unfrequent rare species in them. None of  the 
axes showed a significant statistical association 
with the environmental variables under considera- 
tion. 

Masked analysis 

NPCA. A second ordination was performed, 
masking all sites and species that had zero or near- 



zero scores along axis 1 of  the NPCA ordination 
with the complete data (i.e. disjunct data sets and 
rare species). As expected, only one asymmetric 
component  (axis 1) was extracted. This first axis 
goes approximately from the origin of  the data 
space to the centroid of  the cluster, and sites having 
higher total abundances project further away than 
sites with low abundances. In our case (presence- 
absence data), axis 1 reflected the species-richness 
of  each site, the more diverse sites having higher 
scores. Axis 2, analysing the residual floristic varia- 
tion, showed a significant linear correlation (r = 
0.35, P < 0.001) with axis 1. The orthogonality 
condition does not necessarily mean lack of  linear 
correlation between axes when an asymmetric com- 
ponent is considered: total species abundance in 
this desert is correlated with floristic variation (Ez- 
curra et al., 1987). 

Axis 2 (explaining 14.4% of  the residual disper- 
sion in the floristic data) was highly associated to 
both landform and altitude (r 2 = 0.55, P < 
0.001). This axis extracted the main floristic varia- 
tion in the area: from rocky communities at higher 
elevations to sandy, deep-soil communities at lower 
altitudes. Axis 3 (explaining 8.0% of  the residual 
dispersion), also showed a significant relation with 
landform (r 2 = 0.38, P < 0.001). An interpreta- 
tion of  the results is given in Ezcurra et al. (1987). 
The main topographic sequence in this desert was 
recovered by axes 2 and 3, forming an arched sam- 
ple cluster. The same configuration could be seen 
on the corresponding species ordination. 

Reciprocal Averaging. RA also produced axes 
which related statistically to environmental data, 
but, in spite of  the masking procedure, the rare- 
species effect still had a great impact on the analy- 
sis. Axis 1 (explaining 7.6% of  the dispersion in the 
data cluster) showed a significant linear relation 
with landform (r 2 = 0.59, P < 0.001), but this re- 
lation was mostly due to the extreme scores of  three 
dune sites. Axis 2 (explaining 6.3% of  the disper- 
sion) presented also a high association with land- 
form (r 2 = 0.34, P < 0.001), but it was found 
again that this relation was due to extreme scores of  
three river-bank sites which had not been masked 
from the analysis as they also supported some non- 
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riparian species. These first two RA axes detected 
true floristic variation, but failed to analyse the 
main floristic gradient and concentrated on a few 
atypical sites. Subsequent axes continued to sepa- 
rate one or a few sites, on the basis of  the presence 
of  one or a few species of  restricted distribution. 
None of  these axes showed a significant relation to 
environmental variables. 

Discussion 

I t  has been demonstrated (Gauch et al., 1977; Del 
Moral, 1980) that given a strongly non-linear gra- 
dient, RA is better than PCA at recovering the 
original environmental gradient. The main reason 
for this lies in the particular form of  standardisa- 
tion used in the weighted averages scoring system 
of  RA, which is capable of  unbending the horse- 
shoe configuration of  non-linear data clusters in 
both stand-space and species-space. However, the 
arguments supporting this conclusion have been 
based either on theoretical reasoning (Hill, 1973, 
1974) or on simulated data for species with Gaussi- 
an response curves (Gauch et al., 1977; Del Moral, 
1980). In practice, though, simple non-standardised 
PCA often gives more reliable descriptions of  the 
floristic variation in the data, as RA is frequently 
distorted by the rare-species effect (e.g. Oksanen, 
1983; Ezcurra, 1984). 

Because of  its particular form of  score standardi- 
sation, RA gives the same weight to all species. 
Hence, rare species are treated as being extremely 
distinctive. RA places such species (and the sites 
containing them) at the extreme end of  ordination 
axes. Gauch (1982) suggested that this problem can 
be easily overcome by deleting rare species from the 
data matrix. In practice, deciding when a species 
can be considered rare is a difficult and highly sub- 
jective task. Some species might occur in just a few 
sites because their particular habitat is poorly 
represented in the data matrix. Notwithstanding, 
they represent a true and well-defined floristic gra- 
dient, and should not be disregarded from the anal- 
ysis. Other species may appear in only a few sites 
because their density in the area is low for a given 
stand size. Finally, some weedy, or "oportunistic", 
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species may show a more or less random occurrence 
in the sample, being present in only a few sites that 
do not present a distinct environmental characteris- 
tic. It would clearly be desirable to eliminate the 
last two categories from a floristic data matrix, as 
they add little or no information to the ordination 
problem, but there is no easy way to separate a pri- 
ori the three groups and many intermediate cases 
may be found. To eliminate "uninformative" spe- 
cies from the analysis, a good knowledge of  the en- 
vironmental preferences of  each species is needed. 
But one of  the main objectives of  a vegetation 
study is, precisely, to discriminate between species 
with a strong association with environmental fac- 
tors from species with no clear environmental 
preferences. A priori deletion of  all species occur- 
ring in, say, less than five sites might obscure im- 
portant information. 

It has been clear since the publication of  Noy- 
Meir's (1973) and Noy-Meir et  al. 's (1975) work, 
that any data transformation in PCA will change 
the configuration of  the sample cluster in the alter- 
native space (e.g. standardisation by species to get 
a less bended configuration of  the site cluster in 
species-space will produce unexpected distortions 
of  the species cluster in site-space). RA overcomes 
this problem in a mathematically elegant way, by 
using site standardisation when site scores are cal- 
culated, and species standardisation when species 
scores are calculated. Geometrically, this means 
that data transformations in one space are not 
reflected as undesirable changes on the other, alter- 
native, space (note that the standardisation in RA 
is not a double standardisation but rather an alter- 
nating system of  simple one-way standardisations). 
This type of  standardisation means that all species 
are given equal weights in the analysis. In theory, 
this is a desirable property: species occupying the 
same position along the gradient will be given simi- 
lar scores independently of  their overall abun- 
dance; sites with a similar species composition will 
present similar scores even if they differ in their ab- 
solute total abundances. 

But RA's main virtue can also be its main defect. 
Rare species with no clear environmental preference 
will be considered as indicators of  large differences 
between sites, as they are given the same impor- 

tance as the more abundant species with well- 
defined preferences. Geometrically, standardising 
by row totals is equivalent to a radial projection of  
the data points onto a unit hypotenuse hyperplane 
(Noy-Meir et  al., 1975; Greig-Smith, 1983). Obvi- 
ously, species present in only one site will be 
projected on the edge of  this hyperplane, and will 
appear as occupying an extreme of  the floristic gra- 
dient. The same, of  course, can happen if rare sites 
with only one species are incorporated to the analy- 
sis. This can be understood in more mathematical 
terms by comparing the asymmetric similarity 
measurements (eqs. 11 and 12) and their associated 
eigenvector problem (eqs. 9 and 10). The standardi- 
sation by row totals will give any rare species an ex- 
tremely high similarity with the other species with 
which it shares its distribution. Therefore, the 
scores of  rare species will amplify the scores of  the 
other species in that particular site. If  an eigensolu- 
tion )x, x, y is thought of  as the product of  the itera- 
tive calculation described in eqs. (7) and (8), it be- 
comes clear that rare species (or depauperated sites) 
will present very high scores and can distort the 
analysis as they are placed at the extreme ends of  
a sample gradient. 

The use of  NPCA does not exclude the use of  
RA. Rather, they both are complementary descrip- 
tive techniques. RA is a good and reliable method 
if most species are related to some main environ- 
mental gradient, and if it is wanted to give the same 
weight to every species. If, alternatively, it is 
thought that the more frequent species should have 
more weight in the analysis, NPCA is the adequate 
tool for exploring variation in the data. Detrending 
techniques to remove the arch effect can, of  course, 
be applied to NPCA in the same way as they are ap- 
plied to correspondence analysis, by using the itera- 
tive calculation approach. In our experience with 
field data, however, the rare-species effect on ordi- 
nation analyses is frequently a bigger problem than 
the nonlinear relationship between ordination axes 
and environmental factors. 
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