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Stem-Succulent Trees from the Old
and New World Tropics

Eleinis Ávila-Lovera and Exequiel Ezcurra

Abstract Stem-succulent trees are common in tropical drylands. Besides their
ability to store water, these trees also possess photosynthetic bark, which can
re-assimilate internally respired CO2 at virtually no water cost. Both of these traits
are advantageous in seasonally dry ecosystems, where plants are exposed to periods
of limited water availability and, consequently, carbon gain. In most species, plants
do not use the stored water in stems to buffer daily water deficits; they use this water
to flush new leaves before the onset of rains. This gives an extra advantage to
stem-succulent trees over other functional groups because leaves are already present
when the first rain falls. Having succulent stems does not pose a mechanical con-
straint in these plants, rather the succulence of the tree stem can act as hydrostatic
pressure against the bark, contributing to the biomechanical support of tall trees.
Stem-succulent trees are also able to maintain physiological processes and growth
during drought, making them good candidates to be used in reforestation of
degraded arid lands.

Keywords Photosynthetic bark � Retamoid � Sarcocaulescent � Stem photosyn-
thesis � Tropical dry forest � Water use efficiency

Introduction

Stem-succulent trees with photosynthetic bark have evolved in association with
tropical drylands. The large mid-latitude coastal deserts of the world such as the
Namib in Southern Africa, Atacama in Chile, the Saharan Atlantic Coastal Desert,
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and Baja California in Mexico, are found on the west side of the African and
American continents associated with cold coastal currents that move towards the
equator along the eastern fringe of the Atlantic and Pacific oceans. North and south,
these deserts are flanked by semiarid regions: Mediterranean sclerophyllous scrubs
in their high-latitude boundary, and tropical dry scrubs towards the equator. The
seasonality of precipitation in these drylands changes dramatically from the tropics
towards higher latitudes: whereas Mediterranean shrubs survive mostly with winter
rains brought in from oceanic westerly winds, moisture in the dryland tropics is
almost entirely provided by summer rains delivered by summer monsoons and,
secondarily, by late summer hurricanes and tropical storms (García-Oliva et al.
1991; Douglas et al. 1993; Stensrud et al. 1995). Even within a single ecological
region, the transition from winter to summer rains can be marked. Most coastal
deserts receive winter rains in their high-latitude, temperate reaches, but are fed
predominantly by summer monsoon rains at their tropical edge, where they tran-
sition into tropical thorn scrub and seasonally dry forest (Douglas et al. 1993).
Winter- or summer-dominated seasonality generates different types of drylands.
Winter-rain drylands are dominated by evergreen shrubs with small and/or tough
leaves (e.g., the South African fynbos, California chaparral, Chilean matorral, and
other sclerophyllous scrubs; Dimmit 2000; Ezcurra et al. 2006), while the tropical
summer-rain drylands are dominated by drought-deciduous trees and shrubs
(Bullock et al. 1995; Gordon et al. 2004; Becerra 2005).

In the tropics, dry forests (TDF, Tropical Dry Forest) are diverse ecosystems in
terms of plant life-forms (Medina 1995)—or what has been known more recently as
plant functional groups (PFG). The understory of these forests is dominated by
herbs and woody shrubs, while the canopy is dominated by trees from different
PFG: evergreen, brevi-deciduous (leaf-exchanging), deciduous, stem-succulent, and
lianas (Schnitzer and Bongers 2002). At the same time, TDFs are one of the most
endangered ecosystems worldwide (Rodríguez et al. 2010), since they are in
favorable areas for agriculture, cattle, and human settling. Currently, some efforts
are underway to recover these ecosystems. An important step to achieve this is
reforestation with key plant species, for example, stem-succulent Baobab trees
(Adansonia, Fig. 1) have been used in reforestation practices in Africa, Madagascar
and Australia where they are one of the most representative trees (Wickens and
Lowe 2008). The amount of fauna associated with these forests is high, and
attempts to increase populations of endangered animal species usually start with
re-planting trees that support wildlife. One example is the yellow-headed parrot
(Amazona barbadensis) associated with one specific type of TDF on Margarita
Island, Venezuela (Rodríguez and Rojas-Suárez 2008).

Global Climate Change has prompted many researchers to investigate possible
effects of longer, more intense, and/or more frequent drought periods on plant
physiology (Chaves and Pereira 1992; Chaves et al. 2002; McDowell et al. 2008;
Tezara et al. 2010). Attention has turned to the prevention or remediation of the
detrimental effects of these droughts worldwide. We need to know how climate
change affects vegetation and how vegetation can feed back on climate. The eco-
physiology ofmany plant species is known due to applied research in particular crops,
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biofuel plants, timber trees, or useful dryland species. The study of natural tropical dry
forests has lagged behind but there is now a growing number of studies being pub-
lished with interest in stem-succulent trees and their physiological responses to
drought. Because plants “belong” to different PFG, they likely respond differently to
climate change. The focus of this chapter is to describe the physiology and emphasize
the role of stem-succulent trees in the seasonally dry ecosystems they inhabit.

Fig. 1 Baobab (Adansonia sp.) in Tanzania, East Africa. Photo by Pedro Piqueras
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Plants have evolved a number of different strategies to cope with drought in arid
regions. In many species, drought tolerance has led to the evolution of a reduced
leaf area or to a drought-deciduous habit, both of which contribute to reduced water
loss during critically dry periods. Drought-deciduous and leafless plants in hot
deserts and tropical drylands frequently occur in the form of shrubby or arborescent
species with photosynthetic stems. These plants can have either stem net photo-
synthesis (SNP) or stem recycling photosynthesis (SRP) (Ávila et al. 2014), both of
which positively affect the carbon economy of plants. When plants have SNP, their
stems are usually more efficient in the use of water than leaves, i.e., they have
higher photosynthetic water use efficiency (WUE; photosynthetic carbon gain
divided by water loss from transpiration) (Ehleringer et al. 1987; Osmond et al.
1987; Smith and Osmond 1987; Nilsen and Sharifi 1997). When plants have SRP,
their stems do not lose water because the photosynthetic bark re-assimilates
internally respired CO2. Within plants that have photosynthetic stems one important
group is the sarcocaulescent group, which has large-sized stems with translucent
exfoliating bark, a large amount of parenchymatous tissue that serves as a water
reservoir, and non-succulent, drought-deciduous leaves (Franco-Vizcaino et al.
1990). Another group, the retamoid group, comprises leafless or almost leafless
woody plants that have stomata in the stem’s epidermis or other structures such as
lenticels in the bark surface that permit gas exchange (Schaedle 1975). A third
group, the cactoid group, is composed of succulents with Crassulacean Acid
Metabolism (CAM), such as the New World cacti or the African cactoid euphorbs.
In this chapter we will discuss the physiology, ecology, and biogeographic distri-
bution of sarcocaulescent and retamoid species, with an emphasis on sarcocauls,
trees with photosynthetic bark and possessing the ability to store large amounts of
water in their stems. The cactoid group will not be discussed here as CAM phys-
iology is addressed in an earlier chapter of this book (Silvera and Lasso, this
volume). As we will see in the following sections, the retamoid growth form tends
to be more frequent in the pole-ward edge of deserts in temperate drylands with
winter rains, whereas sarcocauls tend to be more frequent in the equator-ward edges
of deserts in tropical drylands with monsoon summer rains.

Sarcocaulescent Trees

Sarcocaulescent, or fleshy-stemmed trees, also known as “pachycauls” (thick
stems), are plants with a disproportionately thick trunk for their height and canopy.
They are often referred to as “bottle trees” for their abnormally swollen stems. In
contrast with cactoid and retamoid species, which are frequently protected by dense
spines, sarcocaulescent plants show massive trunks tapering upward into relatively
small branches. The most distinctive traits of sarcocauls are: (1) the large amount of
undifferentiated parenchyma both in the stem rays and central axis that serves as a
water reservoir for the plant, (2) the presence of smooth, translucent exfoliating
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bark with photosynthetic cells, and (3) non-succulent drought-deciduous leaves.
Although the bark of sarcocaulescent trees normally has no lenticels or stomata,
limiting the diffusion of CO2 to photosynthetic tissue, SRP, previously known as
bark or corticular photosynthesis (see Ávila et al. 2014), helps to maintain adequate
carbohydrate supplies during leafless periods by re-fixing and recycling respiratory
CO2 (Franco-Vizcaino et al. 1990).

Sarcocauls often coexist in nature with a related morphology: caudiciform
plants. Caudiciform species generally have an enlarged basal caudex or stem axis, a
thick, tuber-like structure at ground level from which the stems and roots arise
(Rowley 1987). The caudex may extend below the ground and often gives rise to
deciduous twining stems. This adaptation is well developed in species of the gourd
family (Cucurbitaceae), such as Marah macrocarpa in California, USA or
Ibervillea sonorae in Mexico.

Plants with giant fleshy stems occur in a number of families in the dry regions of
the Americas, Africa, and Australia (Wickens and Lowe 2008, see Table 1), and
sometimes in montane forests (Carlquist 1962, 2001). Remarkably, fleshy-stemmed
trees are particularly dominant and diverse in some highly isolated insular envi-
ronments such as the island of Socotra, that lies in the northwestern Indian Ocean
near the mouth of the Red Sea between the Arabian Peninsula and the Horn of
Africa (Brown and Mies 2012), or Madagascar (Fischer and Theisen 2000). The
third hotspot of sarcocaulescent plants is the Peninsula of Baja California in Mexico
(Franco-Vizcaino et al. 1990), which is not a true island now but has evolved as an
island ecosystem for most of the last 6 million years. The reason for this extraor-
dinary diversity of sarcocaulescent trees in islands is still a matter of debate.
Mabberley (1974) attributed the extraordinary concentration of pachycauly in some
islands to lineages of herbaceous ancestors evolving arborescent life-forms in
isolation from competition with other trees. Alternatively, the absence of large
herbivores in many of these insular environments during most of the Pliocene–
Pleistocene could have played an important role in the evolution of fleshy stems.

Apart from the role of isolation in the evolution of the syndrome, it seems also
clear that the sarcocaulescent life-form is particularly advantageous in hot dry
environments. In contrast with retamoid species, trees with giant fleshy stems tend
to occur in the equator-ward edge of the warm deserts and in tropical dry envi-
ronments, in places such as the Horn of Africa, the Kaokoveld and Succulent Karoo
in Namibia, the Tehuacán desert in southern Mexico, the Caatinga in Brazil, or the
Dry Chaco in Paraguay. Even within a region, the association with aridity is evi-
dent. In Baja California, for example, the largest concentration of sarcocaulescent
growth forms occurs in the dry central deserts of the peninsula (Franco-Vizcaino
et al. 1990; Perea et al. 2005). Similarly, in Madagascar, the distribution of sar-
cocauls is chiefly restricted to the TDFs and thickets of the western and south-
western regions (Fischer and Theisen 2000; Wickens and Lowe 2008).

There are some species that seem to lie somewhere in the middle of the
retamoid-to-sarcocaulescent gradient. In the American Continent, all species within
the genus Parkinsonia (‘paloverde’, formerly in the genus Cercidium; Fabaceae,
Caesalpinioideae) possess thick stems with green photosynthetic bark, but lack the
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Table 1 Some noteworthy sarcocaulescent genera and their geographic distribution

Plant family Genus Location References

Aizoaceae Psilocaulon South Africa Adie and Yeaton (2013)

Anacardiaceae Cyrtocarpa Mexico Wiggins (1980),
Medina-Lemos and
Fonseca (2009)

Pachycormus Mexico Nilsen et al. (1990),
Franco-Vizcaino et al.
(1990)

Spondias Costa Rica, Panama,
Mexico

Borchert (1994, 1996),
Goldstein et al. (1998),
Medina-Lemos and
Fonseca (2009)

Apocynaceae Adenium Tropical Africa,
Madagascar

Wickens and Lowe (2008)

Frerea

Pachypodium Madagascar Wickens and Lowe (2008)

Plumeria Costa Rica, Mexico,
Nigeria, Puerto Rico

Borchert and Rivera (2001),
Alvarado-Cárdenas (2004),
Sloan et al. (2006)

Asteraceae Dendrosenecio Montane Tropical
Africa

Wickens and Lowe (2008)

Bixaceae Cochlospermum Costa Rica Borchert (1996)

Burseraceae Bursera Mexico, Tropical
America

Nilsen et al. (1990),
Borchert (1996),
Medina-Lemos (2008),
Wickens and Lowe (2008)

Commiphora Africa, Mexico Medina-Lemos (2008),
Wickens and Lowe (2008)

Cactaceae Pereskia Tropical America Britton and Rose (1963),
Arias et al. (2004)

Campanulaceae Cyanea Hawaii Wickens and Lowe (2008)

Brighamia Hawaii

Lobelia Montane S. America,
Africa, India

Crassulaceae Crassula Tropical America

Cucurbitaceae Dendrosicyos Socotra, Southern
Arabia

Wickens and Lowe (2008)

Didiereaceae Portulacaria South Africa Cowling and Mills (2011),
Adie and Yeaton (2013)

Euphorbiaceae Euphorbia Africa, Tropical
America

Givotia Madagascar Wickens and Lowe (2008)

Jatropha Mexico, Central
America

Maes et al. (2009),
Díaz-López et al. (2012),
Wickens and Lowe (2008)

Ricinus Simbo et al. (2013)

Fabaceae Enterolobium Costa Rica Borchert (1994)
(continued)
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fleshy parenchymatic tissues or the ability to store water of the true sarcocauls
(Fig. 3 of Santiago et al. this volume). Roots of these species can also be green if
they grow exposed to sunlight (Fig. 2). A similar intermediate case is posed by the
arid-zone tree Geoffroea decorticans (Fabaceae, Caesalpinoidea) in Argentina and
Chile, which has drought-deciduous leaves and large stems with exfoliating green
bark, but lacks fleshy parenchyma and the ability to store water.

Table 1 (continued)

Plant family Genus Location References

Dalbergia Costa Rica, Mexico Borchert (1994),
Olvera-Luna et al. (2012)

Delonix Madagascar Wickens and Lowe (2008)

Gliricidia Costa Rica Borchert (1994)

Fouquieriaceae Fouquieria Baja California,
Sonoran Desert
(Arizona)

Franco-Vizcaíno et al.
(1990), Nilsen et al. (1990),
Pockman and Sperry (2000)

Malvaceae:
Bombacoideae

Adansonia Tropical Africa,
Madagascar. NE
Australia

Wickens and Lowe (2008)

Bombacopsis Central America Borchert and Rivera (2001),
Borchert and Pockman
(2005), Wickens and Lowe
(2008)

Bombax Old World Tropics Coster (1923), Wickens and
Lowe (2008)

Cavanillesia Tropical America

Ceiba
(+ Chorisia)

Tropical America Borchert and Rivera (2001),
Wickens and Lowe (2008)

Ochroma Costa Rica, Panama Borchert (1994), Machado
and Tyree (1994)

Pseudobombax Argentina, Brazil,
Costa Rica, Panama

Machado and Tyree (1994),
Borchert (1996), Borchert
and Rivera (2001),
Schöngart et al. (2002)

Malvaceae:
Sterculioideae

Brachychiton Australia Wickens and Lowe (2008)

Hildegardia Nigeria Borchert and Rivera (2001)

Moraceae Dorstenia Tropical Africa,
Socotra, India,
Mexico

Wickens and Lowe (2008),
González-Castañeda and
Ibarra-Manríquez (2012)

Moringaceae Moringa Madagascar Wickens and Lowe (2008)

Vitaceae Cyphostemma Africa, Madagascar Wickens and Lowe (2008)
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Retamoid Shrubs

The retamoid syndrome (Zohary 1962; Shmida and Whittaker 1981) is common in
certain Old World Mediterranean legumes in genera such as Retama (from where the
syndrome takes its name), Calcycotome, Cytissus, Genista, Spartium, and Ulex, all
common in southern Europe, northern Africa, and the Near East. Retamoid species
are mostly shrubs with highly reduced leaves, photosynthetic stems (Table 2), and,
often, spinescent shoots that give them a characteristic “crown of thorns” appearance.
In North American drylands, a diverse array of species with similar morphology
occur in different families. The most outstanding example is that of the largely
leafless green spiny shrubs which resemble Castela emoryi, a member of the
Simaroubaceae. The convergent forms are Koeberlinia spinosa in the Koeberliniaceae,
Canotia holacantha in the Celastraceae, Thamnosma montana in the Rutaceae,
Adolphia californica in the Rhamnaceae, and Glossopetalon spinescens in the
Crossosomataceae, all having leaves reduced to scales and persistently green stems
that carry out photosynthesis. Compared to North America, the retamoid habit is more
common, and taxonomically more diverse in South America, where retamoid forms
frequently occur outside of strict drylands, in environments such as the Puna of Chile,
the Patagonian steppe, or the Chaco forests (Johnston 1940). The genus Colletia, in

Fig. 2 Roots of Parkinsonia praecox when growing exposed to sunlight. Tropical dry forest in
Margarita Island, Venezuela. Photo by Wilmer Tezara
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the family Rhamnaceae, forms the most common set of retamoid plants in South
America, including five species widely dispersed in Chile, Argentina, Bolivia, and
Uruguay. Other notable retamoid species in South America include Cassia aphylla
(Caesalpinioideae), Prosopidastrum globosum (Fabaceae-Mimosoideae), Retanilla
ephedra (Rhamnaceae), and Bulnesia retama, the only retamoid species within the
New World Zygophyllaceae. Following the name of the dominant genera with this
characteristic green-stem morphology, retamoid species have also been referred to as
“holacanthoid” plants in North America (Muller 1941), or “colletoid” species in South
America (Johnston 1940).

The Evolution of Stem Succulence and Photosynthetic Bark

In the primary shoot of dicotyledons the vascular bundles that run along the stem
perform the basic function of connecting the leaves to the rest of the plant (Gibson
1978; Tomlinson and Wheat 1979). When the stem’s secondary growth begins, a
continuous cambial layer develops and the vascular bundles give way to a con-
tinuous woody tissue made of xylem, inside the cambial layer, and surrounded by
an external layer of phloem covered externally by bark. In short, the main difference
between primary and secondary stems lies in the arrangement of conductive tissues
in the form of vascular bundles surrounded by large amounts of undifferentiated
parenchyma in primary shoots as opposed to a continuous cambium in secondary
stems, and the presence of a photosynthetic epidermis in the former as opposed to a
suberous bark in the latter.

The trunks of both retamoid and sarcocaulescent growth forms show one or both
of these juvenile traits: retamoid plants are characterized by their green photo-
synthetic stems with a stomata-bearing epidermis, while sarcocauls are character-
ized by their fleshy stems with large parenchymatic radii, and often by the presence
of photosynthetic chlorenchyma in their externally smooth, non-suberous bark. At
an anatomical level, Carlquist (1962, 2001) described ancestral juvenile traits in the
wood anatomy of sarcocauls, and hypothesized that the evolutionary mechanism for
the development of the sarcocaulescent growth form was the retention of juvenile
characteristics in the adult trees, a phenomenon he called paedomorphism.
Carlquist’s hypothesis has been challenged by other authors, such as Mabberley
(1982), who believes that pachycauly in islands has evolved from ancestral
herbaceous plants becoming larger and larger individuals in the absence of tree
competitors, and Olson (2003) who showed that the main morphologic traits in
sarcocauls, namely wide parenchymatic rays and abundant axial parenchyma, are
present also in vines and lianas. Olson suggests that pachycauly in many taxa
evolved repeatedly from lianas in the core eudicots.

So while Carlquist hypothesizes that sarcocaulescence evolved from woody trees
with non-fleshy stems, Mabberly believes the syndrome evolved from herbaceous
plants that in the absence of competitors became large and tree-like, while Olson
supports the idea that giant fleshy stems evolved from vines and lianas. In practice,
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because the evolution of sarcocaulescence is polyphyletic, all three models could
have operated independently in different taxa. Mabberly’s model seems a likely
hypothesis for the origin of pachycauly in the case of some arborescent Asteraceae
(Dendrosenecio) and Campanulaceae (Cyanea, Brighamia, and Lobelia), all plants
whose nearest relatives are herbaceous, and Olson’s model seems plausible in the
case of sarcocaulescent Cucurbitaceae (Dendrosicyos) and Vitaceae (Cyphostemma),
two families dominated by vines and creepers. In many other woody taxa [e.g.,
Anacardiaceae, Burseraceae (Fig. 3), or bombacoid Malvaceae (Fig. 4)], however, the
evolutionary pathway is less clearly defined and Carlquist’s hypothesis cannot be
ruled out. Beyond the details of the discussion, these three models jointly constitute
an appealing and evolutionarily parsimonious idea: paedomorphism, the retention of
primary shoot traits in enlarged adult stems, could be a simple mechanism of evo-
lution in response to selective forces favoring either reduced leaves and photosyn-
thetic shoots, or a succulent stem with a large proportion of parenchymatic cells

Fig. 3 Bursera simaruba in
an early successional forest in
Gamboa, Panama. Note the
photosynthetic bark. Photo by
Eleinis Ávila-Lovera
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capable of storing water. It is important to note that both of these characteristics are
advantageous in seasonally dry ecosystems, where water is scarce during at least one
period of the year. One way or another, these three evolutionary models involve
heterochrony, the evolution of changes in the timing of morphologic development
events in one taxon relative to another, as their driving mechanism. Conceptually,
they might explain why the retamoid and the sarcoculescent syndromes are so
common in drylands throughout the world, and why they have arisen independently
in so many taxonomically unrelated families.

Ecophysiology of Trees with Succulent Stems

When we think of trees with succulent stems the first that come to mind are the
Baobabs (Fig. 1). These trees might be the most famous among stem-succulent
trees, and Wickens and Lowe (2008) have described them as “grotesque trees
dominating the landscape”; the landscape usually being African savannas. These
singular trees usually store water in their stems during the rainy season and it is
thought that the water is used during the dry season. In this section we will describe
the use of water by this type of tree and how they physiologically respond to
environmental stresses such as drought.

Fig. 4 Ceiba speciosa in Riverside, California, USA. Photo by Louis S. Santiago
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Physiology of Succulent Trees

Plants with succulent stems are found in families spread among the Angiosperms
(Table 1). Representative genera mostly belong to the family Malvaceae-
Bombacoideae, followed by Apocynaceae, Euphorbiaceae and Fabaceae.
A common characteristic is that they all inhabit seasonally dry environments.

Table 2 Ratio of stem net photosynthesis to leaf photosynthesis in retamoid species from North
American Deserts (taken and modified from Ávila et al. 2014)

Species Family Location Stem-to-leaf
A ratioa

References

Bebbia juncea Asteraceae Sonoran Desert 0.52 Ehleringer et al.
(1987)

Chrysothamnus
paniculatus

Asteraceae Sonoran Desert 0.64

Dyssodia
porophylloides

Asteraceae Sonoran Desert 0.83

Gutierrezia
microcephala

Asteraceae Sonoran Desert 0.85

G. sarothrae Asteraceae Sonoran Desert 0.26

Hymenoclea
salsola

Asteraceae Sonoran Desert 0.67

Lepidium fremontii Brassicaceae Sonoran Desert 0.70

Porophyllum
gracile

Asteraceae Sonoran Desert 0.63

Psilostrophe
cooperi

Asteraceae Sonoran Desert 1.01

Salazaria mexicana Lammiaceae Sonoran Desert 1.11

Senecio douglasii Asteraceae Sonoran Desert 0.06

Sphaeralcea
parvifolia

Malvaceae Sonoran Desert 0.61

Stephanomeria
pauciflora

Asteraceae Sonoran Desert 1.04

Thamnosma
montana

Rutaceae Sonoran Desert 0.48

Eriogonum
inflatum

Polygonaceae Mojave Desert 0.50 Osmond et al. (1987)

Hymenoclea
salsola

Asteraceae Arizona 0.60 Comstock and
Ehleringer (1988)

Spartium junceum Fabaceae California 0.38 (Nilsen and Bao
1990)

Justicia californica Acantaceae Sonoran Desert 1.29 Tinoco-Ojanguren
(2008)

aPhotosynthetic rate of stems were expressed in projected area before calculating the ratio of
stem-to-leaf photosynthesis
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Usually, succulence in stems is associated with the presence of chlorenchymatic
tissue underneath the periderm which can re-assimilate CO2 released by respiration
(Nilsen et al. 1990). Stem recycling photosynthesis has been found in African
Baobab (Adansonia digitata) and Castor bean (Ricinus communis), and effectively
contributes to bud development in both plants (Simbo et al. 2013). The stem
contribution to bud development was estimated by excluding light from penetrating
the stem periderm; a reduction of 50 and 67 % in dry biomass of developed buds
was found in drought and watered Adansonia digitata plants, respectively, while
the reduction was lower in Ricinus communis (25 and 40 % in drought and watered
plants, respectively) (Simbo et al. 2013).

When comparing leaf and stem photosynthesis, rain was found to be detrimental
for CO2 diffusion in leaves because it can clog stomata, but wetting the stem
periderm decreases reflectance which subsequently increases light absorption by the
chlorenchyma, electron transport rate (ETR), and photosynthesis in Quercus coc-
cifera (Manetas 2004). For plants with SRP, CO2 diffusion does not decrease with
stem wetting because the CO2 source is derived from respiration and not from the
atmosphere.

Similarities and differences have also been found when comparing leaf and
SNP. In general terms, stem photosynthesis functions just like leaf photosynthesis.
Stem net photosynthesis has the same responses to environmental variables such as
photosynthetic photon flux density (PPFD), internal concentration of CO2 (Ci),
temperature and vapor pressure deficit (VPD). Both stem and leaf photosynthesis
show C3 metabolism, and both organs have high stomatal density (Osmond et al.
1987; Nilsen et al. 1989; Nilsen and Sharifi 1994; Aschan and Pfanz 2003).
However, WUE has been found to be higher in stems, which can be incredibly
valuable in periods of water deficit when most plants with SNP are leafless (Ávila
et al. 2014). On the other hand, stem photosynthesis in plants with SRP occurs at no
water cost, making these plants very successful during periods of water deficit
and/or low temperature, where they can re-assimilate respired CO2 without losing
any water.

Since stem-succulent trees are typically found in seasonally dry ecosystems, one
advantage that has been associated with this trait is the use of stored water during
the dry season to buffer daily water deficits. However, some studies have evaluated
this assumption and have found that daily use of stored water is usually negligible
in Adansonia species (Chapotin et al. 2006a, b, c). In Adansonia rubostripa and
Adansonia za, stored water does not buffer daily water potential (Ψ) because of the
difficulty in withdrawing water from the storage tissue (Chapotin et al. 2006c).
Instead, stored water is used to flush new leaves before the onset of the rainy season
in Adansonia species, giving them an advantage over other species since leaves are
already present when the first rain comes, thus maximizing photosynthetic capacity
and extending the growing season of the plants (Chapotin et al. 2006b). This
phenology also takes place in Plumeria alba from Guánica, Puerto Rico, where the
peak of leaf flushing occurs 2–4 months before the peak of rainfall when water
availability of the soil is low (Sloan et al. 2006).
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Other species show daily use of stored water during the lag between leaf tran-
spiration and stem basal sap flow, as demonstrated in five species of tropical canopy
trees from a lowland seasonal moist forest in Panama (Goldstein et al. 1998). Here,
the use of stored water and recharge of reservoirs is a dynamic process that can even
be altered by fluctuating environmental conditions (Goldstein et al. 1998). In drier
ecosystems, such as thornscrubs and deserts, seasonal and diurnal variation in leaf
Ψ is small due to the buffering capacity of succulent stems as is found in Fouquieria
colummnaris, Pachycormus discolor, and Bursera microphylla in Baja California
(Nilsen et al. 1990). The SRP found in Fouquieria colummnaris and Pachycormus
discolor, in addition to the capacity to store water in their stems, may ensure
survival during extreme drought conditions (Franco-Vizcaino et al. 1990).

Not only leaf-flushing but also flowering has been associated with stored water
in stem-succulent trees. In a study performed in a TDF in Costa Rica where five
PFG were evaluated (deciduous hardwood, deciduous lightwood, deciduous soft-
wood, evergreen lightwood and evergreen softwood), deciduous lightwood trees
were found to have the highest capacity to store water during the rainy season
(Borchert 1994). On average, stem water content of stem-succulent trees was 63 %
compared to 31 % in deciduous hardwood, 47 % in deciduous softwood, 46 % in
evergreen lightwood and 51 % in evergreen softwood (Borchert 1994). This
capacity to store water in stem-succulent trees was associated with low wood
density (0.40 g cm−3), and the water stored during the wet season was found to be
used at the end of the dry season for leaf flushing and flowering (Borchert 1994). It
was also found that deciduous lightwood trees experienced less water deficit, and
both their leaf and stem Ψ remained high during the dry season after leaf shedding
(Borchert 1994).

Water storage capacity of stems is highly correlated to wood anatomy and
biochemical support (Borchert and Pockman 2005; Chapotin et al. 2006a).
Stem-succulent plants among other plant types have the highest capacity to store
water and can maintain higher Ψ than deciduous and leaf-exchanging species
during drought (Borchert and Pockman 2005). One might think that succulence is a
disadvantage for stability and mechanical support. However, in six species of
Adansonia, lighter wood and its intrinsic high capacity of water storage acts as
hydrostatic pressure against the bark which can contribute to biomechanical sta-
bility in tall trees (Chapotin et al. 2006a; Niklas 2016 this volume). It seems that
succulent plants are better armed to face drought since water uptake during rehy-
dration and minimum Ψ in the dry season are correlated to water storage capacity
(Borchert and Pockman 2005), and they suffer less from collapse when fully
hydrated (Chapotin et al. 2006a).

Leaf and root morphology are often indicative of where plants live or can live.
Baobab trees can have smaller leaves with higher stomatal density in drier and hotter
areas than in wetter areas (Cuni Sanchez et al. 2010). Also, while rooting depth is
sometimes deeper in arid than in sub-humid ecosystems, stem succulents have an
intermediate depth, with widely spread shallow roots (Schenk and Jackson 2002).
Furthermore, pruning has a significant effect on leaf size: Baobab trees growing in the
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same environment have smaller leaves on pruned branches than on non-pruned
branches (Cuni Sanchez et al. 2010). The genetics of different populations and the
phenotypic plasticity in physiological traits of a single population found in Baobabs
may also play a role in drought responses (Cuni Sanchez et al. 2010).

Plant functional groups (evergreen, deciduous, brevi-deciduous, and
stem-succulent trees) were studied in Guanacaste, Costa Rica to determine what
trait or suite of traits are part of the strategies tropical trees use to respond to drought
periods in terms of water balance, wood traits, and phenological behavior (Worbes
et al. 2013). In a Principal Component Analysis (PCA), the two first axes were
related to hydraulic conductivity, control of transpiration and water loss (Worbes
et al. 2013). In Cochlospermum vitifolium, plants flush leaves all year round despite
the seasonality of rainfall in Guanacaste (Fallas-Cedeño et al. 2010). Stem succu-
lents also have higher leaf and wood carbon isotopic composition (δ13C) when
comparing to deciduous, brevi-deciduous and evergreen species, suggesting that
they have tighter control over their stomata, making them water conservative
species and successful pioneers in this TDF (Worbes et al. 2013). In another TDF in
Belize, stem succulents flush leaves early in the dry season, likely using water
stored during the previous rainy season (Sayer and Newbery 2003).

Most stem-succulent trees occur in TDF, yet there is some evidence of stem
succulents in Amazonian forests. Schöngart et al. (2002) studied the same PFGs as
Worbes et al. (2013) and their phenological and stem-growth responses to
flood-pulses and found that Pseudobombax munguba, a stem-succulent tree species,
flushed new leaves only after the end of the flooded period. The whole reproductive
phase was completed within one single aquatic phase in contrast with the others
PFGs, and maturation of fruits finished by the end of the aquatic phase or with a
little extension intro the terrestrial phase (Schöngart et al. 2002). Stem diameter
increment had the highest correlation with monthly precipitation among the PFGs
studied (Schöngart et al. 2002). It was argued that the phenological processes are
correlated to the flood-period and not to photoperiod (Parolin et al. 2016, this
volume), as it has been stated for TDF trees in Costa Rica and Puerto Rico by
Borchert and Rivera (2001) and Sloan et al. (2006), respectively.

Physiological Responses to Drought

In terms of drought, numerous experiments have been performed to assess pho-
tosynthesis and growth responses to water deficit. Most of these studies are con-
ducted in pots and in greenhouses under controlled conditions using juvenile plants.
Despite the lack of realism compared to field-based studies, these data are needed to
advance our understanding of the mechanisms driving plant processes. Some
studies have directly compared adult populations of the same species or closely
related species in contrasting environments. Some of the plant species listed in
Table 1 have been used in drought experiments and the most relevant results are
presented below.
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Two populations of Adansonia digitata from West and Southeast Africa were
compared in terms of physiological and morphological responses to drought (De
Smedt et al. 2012). Seedlings were used to investigate the mechanisms by which
Baobab juveniles cope with soil drought and it was found that the population from
West Africa had the strongest drought-avoidance mechanism, making them more
water conservative than seedlings from Southeast Africa (De Smedt et al. 2012). In
another comparative study, Adansonia grandidieri, Adansonia madagascariensis
and Adansonia rupostripa from Madagascar, the species with the lowest drought
tolerance came from the highest rainfall ecosystem (Randriamanana et al. 2012).
All species cope with drought by reducing stomatal conductance (gs) and having
water stored in the taproot, with a high WUE at the expense of maintaining high
photosynthetic rates (Randriamanana et al. 2012).

Seedlings of Adansonia digitata have been used to study sap flow and water use
in drought experiments, which include a drought + recovery treatment (Van den
Bilcke et al. 2013). The mechanisms associated with survival during drought
included succulence of the taproot, which represented 17.5 % of total daily water
use, and SRP which takes place in the chlorenchyma below the periderm (Van den
Bilcke et al. 2013).

Drought can affect different aspects of the physiology of stem-succulent trees,
depending on the species. Jatropha curcas shows no changes in specific leaf area,
Ψ range, relative water content, transpiration efficiency, or aboveground biomass,
but phenology (Maes et al. 2009) and biomass production did change (Achten et al.
2010; Díaz-López et al. 2012). Drought-induced production of new leaves with
reduced leaf area and higher stomatal density (Maes et al. 2009), as has been found
in populations of Adansonia digitata, as well as reduced leaf, stem and root growth
(Achten et al. 2010), leaf Ψ, pressure potential, photosynthetic rate, gs, WUE, and
maximum quantum efficiency of photosystem II (Díaz-López et al. 2012). These
morphological and physiological responses to drought allow plants to have a
conservative water use strategy.

Contrary to what is expected, photosynthetic WUE and crop WUE (kg fruits m−3

H2O) in Jatropa curcas decrease with drought (Abou Kheira and Atta 2009;
Díaz-López et al. 2012). The highest crop WUE was found in the treatment with the
highest water availability (Abou Kheira and Atta 2009). On the other hand, most other
characteristics, including oilseed quality, do not change with drought treatments, which
indicates that Jatropa curcas can be used to re-vegetate a wide range of arid lands to
exploit its oil without changes in its quality (Abou Kheira and Atta 2009).

Another trait to cope with drought in succulent trees is starch storage during the
rainy season (Fallas-Cedeño et al. 2010). As with water, starch is used seasonally
and not daily in Cochlospermum vitifolium; it is used as a storage reserve for
phenological events such as branch extension, leaf flushing, and reproduction that
take place during the dry season before the onset of rains (Fallas-Cedeño et al.
2010). However, both starch storage and stem succulence are typical traits that
correspond to a drought avoidance strategy.
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Use of Stem-Succulent Trees for Conservation
and Rehabilitation of Degraded Arid Lands

Stem-succulent plants have great potential for use in restoration of degraded lands
due to their exceptional physiological performance and tolerance to drought.
However, little has been done to actually address this hypothesis and determine
whether these traits are enough to promote effective reforestation practices.

One of the few studies that support this hypothesis was performed in South
Africa where Portulacaria afra was found to be a nurse plant playing an important
role in the regeneration dynamics of arid subtropical thicket vegetation (Adie and
Yeaton 2013). This species modifies microhabitats and creates opportunities for
plants that are more susceptible to extreme conditions, which are common in this
ecosystem (Adie and Yeaton 2013). Portulacaria afra clumps comprised approx-
imately 50 % of the studied area and approximately 90 % of tree seedlings were
recorded under its canopy (Adie and Yeaton 2013). Portulacaria afra may simply
provide shade and protection against intense rain events to young seedlings, but a
high soil carbon content has been found under its clumps (Cowling and Mills
2011), which is known to have important effects on soil structure and, possibly, on
the soil microbial community, enhancing the recruitment of other plant species.

More informal than an experiment is the observation that Baobab trees are now
being planted—consciously or unconsciously—in areas where they were not
originally present. Some of these areas are even drier than their native range. This
provides evidence that stem-succulent trees can cope with severe drought periods,
which would be ideal to restore plant communities in arid lands. Furthermore,
Baobabs have multifunctional uses as shade and street trees, for water storage,
shelter and storage, food, wood, fiber, fertilizer, fuel, insecticide, and as an orna-
mental (Wickens and Lowe 2008). Recently, Baobab seed oil and fruit pulp have
been exported to countries outside of Africa, such as Canada, USA and European
countries (Venter and Witkowski 2010). Using them to reforest degraded lands can
have significant positive effects on both the health of the land and the economy of
nearby villages.

Conclusions and Future Directions

In seasonally dry ecosystems, there are predominantly three plant growth forms
with photosynthetic stems, based on morphology, anatomy and physiology of the
stems: sarcocaulescent, retamoid, and cactoid. The sarcocaulescent and retamoid
forms include plant species with a broad biogeographic distribution and many
similar characteristics. Even when the stem does not look green it might have a
layer of chlorenchyma beneath the periderm, which can carry either SNP or SRP
(Ávila et al. 2014). This feature and the possibility to store water in fleshy stems of
sarcocaulescent species, supports the ability to cope with prolonged periods of
water deficit, common in deserts and TDF.
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There is not a unique hypothesis about the origin of stem succulence, photo-
synthetic bark, or sarcocauls in general. There are multiple hypotheses that cannot
be ruled out because the evolution of the green stem syndrome is polyphyletic, and
all possible models of evolution could have operated independently in different
taxonomically unrelated families.

Ecophysiological performance of different sarcocaulescent species have been
described in tropical countries of the Old and New Worlds. However, more in situ
studies under field conditions that take into account all biotic and abiotic factors
affecting the physiology of adult populations need to be done if we are to use this
information to make decisions about land management and conservation of
endangered species. This effort is underway, but we still need the help of new
physiological ecologists to work on the still unanswered questions.
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