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ABSTRACT

Four differential equation decomposition models were postulated, based on different assumptions of the behavior of the decomposition

1 dX
rate (} . %) Model 1, rate constant; Model 2, rate decreasing linearly as a function of the remaining litter fraction; Model 3,

rate decreasing nonlinearly as a function of the remaining litter fraction; and Model 4, litter formed by two fractions, each having
a constant decomposition rate but varying in proportion with time (thus the overall rate will also vary with time).

The models were tested against dry-weight data from three contrasting litter types from the Tamaulipan cloud forest: leaves
of Liguidambar styraciflua, fraits of Prunus serotina, and branch segments of L. szyracifiua. All three types were incubated in litter
bags at constant temperature (30°C) and 100 percent relative humidity. Subsets of four replicates were collected, dry-weighed, and
discarded at increasing intervals for three months.

Model 1 (the negative exponential) consistently gave the worst fit to the data. The best fits were obtained from Models 3 and
4, showing the high intrinsic heterogeneity of litter and, consequently, the variability of the relative decomposition rates.

RESUMEN

. . L .. (1 dX
Sobre la base de diferentes supuestos respecto del comportamiento de la tasa intrinseca de descomposicion (}—( g B modelos

de ecuaciones diferenciales fueron postulados: Modelo 1, tasa constante; Modelo 2, tasa linealmente decreciente en proporcion a la
fraccién de mantillo remanente; Modelo 3, tasa no-linealmente decreciente; y Modelo 4, mantillo formado por dos fracciones cada
una de ellas con tasa de descomposicion constante pero diferentes entre si (dado que las proporciones de cada fraccién varian en el
tiempo, la tasa global disminuye también con el tiempo).

Los cuatro modelos fueron probados contra datos de masa seca provenientes de tres tipos de residuos vegetales contrastantes
colectados en el bosque mesofilo de Tamaulipas: hojas de Liguidambar styraciflua, fratos de Prunus serotina, y segmentos de ramas
de Liguidambar styracifiua. Los tres tipos de material fueron incubados en bolsas de malla a temperatura constante (30°C) y 100
por ciento de humedad relativa. Durante tres meses, subconjuntos de cuatro réplicas fueron colectados a intervalos crecientes, secados
y finalmente pesados.

El Modelo 1 (exponencial negativo) produjo consistentemente los peores ajustes a los datos. Los mejores ajustes fueron obtenidos
por los Modelos 3 y 4, lo que muestra la alta heterogeneidad intrinseca del mantillo y la tendencia de la tasa intrinseca de
descomposicion a disminuir a medida que avanza la descomposicion del material vegetal.

THE UNDERSTANDING OF DECOMPOSITION is often simplified
by describing the process quantitatively as a whole, ac-
counting for neither the interactions between organisms
not the individual results of each successive step. This
approach has been the basis for the development of a series
of mathematical models that represent decomposition in
a simplified form, ignoring the highly heterogeneous biota
that intervenes in the process and the great complexity of
their interactions (Swift ez @/. 1979). These models are
valuable in that they not only objectively describe the
process, but also permit exploring and testing certain hy-
potheses about the functioning of the system (Bunnell
1973, Swift et al. 1979).

The equation most widely used to simulate decom-
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position is the negative exponential developed by Jenny
et al. (1949; for a detailed discussion see Olson 1963).
This model is simple and functionally identical to the
model of disintegration of radioactive isotopes. Both are
based on the assumption that the proportion of material
that is lost per unit time is constant. This appears to fit
observations of the weight loss of litter in some cases
(Satchell 1974), but in many others the results observed
are different from those predicted by the exponential func-
tion (Minderman 1968, Bernhard-Reversat 1972, Angel
& Wicklow 1974, Ewel 1976, Edwards 1977, Carpenter
1982). Recently, other models have been formulated as
alternatives for desctibing decomposition as a function of
time: ordinary differential equations have been formulated
by Bunnell and Tait (1974), Carpenter (1982), Howard
and Howard (1974), and Wieder and Lang (1982), and
life tables have been proposed by Christian (1984). How-



ever, some of these mathematical relations are complex,
and others are based on questionable or untealistic bio-
logical assumptions (Lousier & Parkinson 1976, Bunnell
et al. 1977, Wieder & Lang 1982). Most decomposition
studies reported in the literature were made under field
conditions, where the process is influenced simultaneously
by two uncontrolled environmental variables, moisture and
temperature. Because environmental conditions are not
constant, the lack of fit of a particular model can easily
be attributable to changes in either of these two variables
during the field study. Hence, experimental decomposition
studies under controlled environmental conditions are
needed.

This paper analyzes the theoretical propositions and
performances of four differential equation decomposition
models. The models are compared with controlled exper-
imental data from three different types of litter collected
in the Tamaulipan cloud forest. The equations are based
on four simple and patsimonious (i.e., having the mini-
mum number of parameters) assumptions with regard to
the mathematical behavior of the decomposition rate as a
function of the remaining litter fraction at any given time.

The theoretical predictions of the models are compared,

with annual litter production and standing-litter values in
the cloud forest.

METHODS

SAMPLING PROCEDURE AND INCUBATION.—Three different
types of litter were collected from a cloud forest located
in the wet eastern slope of the Eastern Sierra Madre, at
the Rancho del Cielo, Tamaulipas, Mexico. The dominant
species in this forest is L. styraciflua L., usually growing
in association with Quercus sartorii Liebm., Q. germana
Cham. et Schlecht., and Clethra pringlei Wats. A detailed
floristic and phytogeographic description of the area is
presented in Puig ez #/. (1983). Note that, although this
forest occurs in a frost-free tropical region and is usually
classified as a tropical forest, most of the overstory-dom-
inant species have temperate affinities (Puig 1976).

Recently shed leaves of L. styracifiua, branch segments
(approx. 4 cm long and 0.4—0.8 cm thick) from the same
species, and fruits of P. serotina Ehr. were collected from
the top layer of the ground litter. For each litter type, 32
litter bags (8 cm X 8 cm; mesh size 1.3 mm) were
prepared, each bag containing 5 g air-dried material. The
seeds within the P. serotina fruits were crushed to prevent
germination and to allow decomposers to invade the seed
substrate.

The bags were placed in an incubator at 30°C (£ 1°C)
and 100 percent relative humidity, following a random
block design on trays containing 10 cm of topsoil from
the same forest. The soil acted as an incubation medium
and as a source of microorganisms. Four randomly chosen
bags (one bag per block) of each litter type were collected

at weekly intervals for the first three weeks, and every two
weeks thereafter. The collected material was oven-dried
at 85°C, weighed, and discarded. The initial (# = 0) oven-
dry mass of the samples was estimated from four additional
5-g replicates of each litter type, which were not incubated.
The experiment was continued for 13 wk.

MODELS USED AND ASSUMPTIONS INVOLVED.—The four
mathematical models postulated start from differential
equations describing the behavior of the relative rate of
decomposition (i.e., the rate of decomposition per unit
mass of litter).
Model 1.—This model assumes that the relative rate
of decomposition is constant with time. Hence,
1 dX
S o=k (1)
X dr
where X is the amount of litter at time ¢, and —£ is the
constant rate. Integrating Eq. (1) the model becomes

X, = X,exp(—ét) 2)

where X, is the initial (# = 0) amount of litter. Eq. (2)
represents the classical negative exponential model first
proposed by Jenny ez a/. (1949).

Model 2.—In this case it is assumed that the decom-
position rate decreases with time, as the more refractory
fractions concentrate in the remaining litter. The simplest
possible assumption is that the rate decreases as a linear
function of the remaining fraction. Hence,

1 dX

X & k(X/X,) 3)
where £ is the initial decomposition rate, which will de-
crease as the remaining litter (X /X, containing the more
refractory fractions) concentrates. Integrating Eq. (3) we
obtain

= X()
1+ At

X, 4
which, like Model 1, is also a one-parameter model.
Model 3.—This model also assumes that the rate of
decomposition decreases with the remaining fraction, but
also assumes that it may do so in a nonlinear way. Thus,

1 dX

—_———— = — b

X @ k(X/X,) (5)
where & is a shape parameter. If the litter is rich in relatively
labile compounds, then 4 < 1, and the rate will not
decrease much as the first fractions are decomposed but
will decrease considerably as the last fractions disintegrate.
If the litter is rich in recalcitrant compounds, then 4 > 1,
and the initial rate & will decrease more strongly as the
first fractions decompose. If 4 = 1, the rate decreases
linearly with the remaining fractions as in Model 2.
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Integrating Eq. (5) we obtain the two-parameter mod-
el:

D SR
X = (1 + bke)ve

If 4 = 1, Model 3 (Eq. 6) becomes Model 2 (Eq. 4).
It can also be shown that for the limiting case 4 = 0,
Model 3 simplifies to Model 1. A similar approach has
been used by Godshalk and Wetzel (1978), who obtained
good fits to decomposition data from a model that assumed
the relative decomposition rate to be a negative exponential

(6)

; ime [L.9X _ 4
function of time (X P k >

Model 4.—For this model it is assumed that the total
litter (X) can be divided into two compartments, one
labile and one refractory. A constant rate is assumed for
each compartment (but, obviously, the overall rate will
not be constant, as the proportion of the two fractions
changes continuously with time). If we define p as the
proportion of labile compounds initially present in the
litter, then the final three-parameter model becomes

X, = X(p exp(—£.2) + (1 — plexp(—k,t).  €7)

A detailed presentation of this model can be found
in Bunnell and Tait (1974) and Hunt (1977). The overall
decomposition rate can be calculated as function of time:

1 dX _ —(kp exp(=k?) + k(1 = plexp(=k,1)
X dr pexp(—k,0) + (1 — pexp(—&,1).

®

FrrTiNG THE EQUATION.—Each model was fitted numeri-
cally using a Hooke and Jeeves direct-search procedure
(Himmelblau 1972) to estimate the least-squares values
of the parameters which minimized the total error function
TE = 2 2 (X, — Xp,)?, where X,, is the mass of litter

remaining in bag 7 at time #, and Xp, is the mass of litter
predicted by the model at time .

The lack of fit of the model to the data, quantified
as total error (TE; i.e., the sum of the squated residuals)
can be partitioned into two components, a pute etror (PE)
term and a regression error (RE) term (Draper & Smith
1981). Pure error derives from the dispersion of the de-
pendent variable (X) for given values of the independent
variable (#), and it can be estimated for each period as the
sum of the squared differences between each observation
and the mean of all the observations for that particular
time period (X,). Hence PE = 2, D) (X, — X)). The

pure error term has 2 (n, — 1) degrees of freedom, where

. I3
n, is the number of observations at time interval ¢,
The error due to regression (RE) derives from the
failure of the model to describe the particular data set. It
is calculated as the difference between TE and PE, and
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FIGURE 1. Changes in litter mass over time for (a) Liguid-

ambayr leaves, (b) Prunus fruits, and (c) Liguidambar branches.
The continuous lines show the fitted curves for Models 1, 2, 3,
and 4.

has » — g degtees of freedom, where 7 is the number of
time intervals and ¢ is the number of parameters in the
model.

An F ratio (mean square of RE /mean square of PE)
can be used to test the null hypothesis that the error



TABLE 1.

Probabilities for the variance ratio (F) test of vegression
error mean square against pure ervor mean square
(PE/RE). The null hypothesis for this test implies that
the fit is acceptable (see text); hence, the higher the
probabilities, the better the fit. Asterisks indicate that
the null hypothesis is rejected, i.e., that the model is

not acceptable.

Litter type
Leaves Branches Fruits
Model 1 <0.0001* 0.50 <0.0001*
Model 2 <0.0001* 0.79 <0.0001*
Model 3 0.95 0.90 0.17
Model 4 0.98 0.87 0.71

introduced by fitting the model is not significantly different
from the internal (7.e., within time-periods) variability of
the data. If the null hypothesis is accepted, it is concluded
that most of the total error is caused by random vatiation
inherent to the data and that the fit is good. If the null
hypothesis is rejected, it is concluded that the error intro-

duced by fitting the model is unacceptably high and that .

the fit is not adequate. Although the F ratio test is not
always strictly applicable because some parameters are
frequently nonlinear, it can be used as an approximate
value and as a measure of comparison between models
(Draper & Smith 1981).

RESULTS

THE PROGRESS OF DECOMPOSITION.—An analysis of variance
on the dry masses showed highly significant differences
between the three litter types (P < 0.0001) and between
the different harvest times (P < 0.0001). differences be-
tween blocks and interaction terms were all nonsignificant
(P > 0.1). As expected, decomposition was faster for the
softer litter types (leaves and fruits) and slower for the
more lignified branches (Fig. 1). Additionally, branches
presented a higher variability in dry mass (indicated by a
high PE value when fitting the models), possibly because
of a higher heterogeneity in both size and chemical com-
position of this litter type, or because of varying initial
degrees of invasion by microorganisms for the different
branch fragments.

All four models described the decomposition of

branches (woody parts) in an acceptable manner, but in
the case of the softer litter classes (leaves and fruits), only
Models 3 and 4 adequately described the decomposition
process (Fig. 1, Tables 1 and 2). In all cases, the worst
fit was obtained with the negative exponential model.
Model 4 gave the best descriptions of the decomposition
of fruits, probably because this litter type fits best the two-
compartment assumption. In effect, P. serotina fruits con-
sist of two principal fractions: the pericarp (composed
chiefly of a soft and fleshy mesocarp) and the seed (com-
posed mostly of the endosperm).

ESTIMATING THE DECOMPOSITION RATES.—An adequate
knowledge of how relative decomposition rates change as
the process advances is central to selecting a good decom-
position model. It is a standard result from calculus that
d'ln-X 1 . . .

X "~ x Therefore, the differential expression for the

rate can be rewritten as

=2 . ©

Hence,

1 dX
< 3 = Al X/Ar (10)
Using Eq. (10), the rate for any given time interval
can be estimated. These rates can be plotted as a function
of the remaining fraction (X,/X,) during the same inter-
val. The value X, (fraction remaining at the middle of the
time interval) can be estimated from Eq. (9):

X, = dX/d:In-X = AX,/Aln-X. (11)

Figure 2 shows the estimated average rates (one for
each time interval) as a function of the remaining litter
fractions, and the curves predicted by the different models.
For Models 1, 2, and 3, these functions were obtained
directly from Egs. (1), (3), and (5), respectively, with the
estimated parameters shown in Table 2. For Model 4 the
rate cannot be calculated as a direct function of the re-
maining fraction, but both rate and remaining fraction
can be simultaneously derived as a function of time from
Egs. (7) and (8), thus forming an implicit functional
relationship.

TABLE 2. Least-squares estimates of the parameters for the four models.
. Model 1 Model 2 Model 3 Model 4
Litter
type V3 £ £ b J/ b £,
Leaves 0.0197 0.0374 0.2680 4.550 0.4438 0.2627 0.0057
Fruits 0.0235 0.0462 0.1694 3.218 0.4718 0.2153 0.0072
Branches 0.0057 0.0070 0.0105 3.003 0.1150 0.0748 0.0038
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As can be observed in Figure 2, decomposition did
not occur at a constant rate, but rather the rates tended
to decrease as a function of the remaining litter fraction.
In the case of branches this pattern was not so clear,
possibly because of the extremely high variability in the
data. In all cases, however, the decomposition rate during
the first week of incubation was much higher than during
the rest of the experiment.

LITTER ACCUMULATION ON THE GROUND.—If X, is the av-
erage amount of litter that falls from the canopy per day,

then
L, = f X, dr.
0

represents the amount of organic matter that will accu-
mulate in the system after z days. This integral can be
solved analytically for all four models, yielding the fol-
lowing accumulation functions:

(12)

Model 1: L, = % {1 —exp(—42)] (13)
X,
Model 2: L, = 7 In(1 + 42) (14)
X, 1
Model 3: L, = 2 -1
1+ bk
.[(1 el ] (15)
Model 4: L, = XO~{£[1 — exp(—£,2)}
+ (1—;1’—)-[1 - exp(—,ézt)]}
(16)

where, again, it can be proven that Models 1 and 2 are
the limiting cases for Model 3 when 4 - 0 and 4 - 1,
respectively. The amount of litter on the ground when
steady-state conditions are obtained can be estimated as

L,=lim-L,. 17)

For Model 1, this limit is L, = X, /4. Model 2 does
not have a limit, though the slope of the accumulation
function (Eq. 14) decreases monotonically with time. This
model predicts that the more refractory fractions of the
licter will tend to accumulate on the soil surface. Model
3 has an equilibrium state

X (L
L= <1—1;>

only if 4 < 1. If 4 > 1 the model predicts a similar
behavior as Model 2: organic matter will accumulate in
the system at an ever-decreasing rate. The first derivative
with respect to time of Egs. (14) and (15) is positive,
whereas the second one is negative for 0 < ¢ < co. Model

(18)
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continuous lines show the expected curves derived from Models
1, 2, 3, and 4.




TABLE 3. Litter accumulation on the forest floor predicted by
the four models.
Time Forest floor litter mass (kg/m?)
(yr) Model 1 Model 2 Model 3 Model 4
1 0.10 0.14 0.24 0.17
10 0.10 0.26 1.51 0.19
100 0.10 0.39 8.90 0.20
500 0.10 0.47 31.24 0.20

4, like Model 1, always predicts an equilibrium no matter
what values the parameters take. In this case,

b 1-p
ot 1)

The three types of litter used in this study were ob-
tained from a forest dominated by L. styraciflua and in
which the rate of litter input to the forest is about 2 g/m?
day (Puig et /. 1983, pers. comm.). Using this litcer
input value and the parameters describing the decom-
position of Liguidambar leaves (Table 2), the accumu-
lation of litter on the forest floor over time can be roughly
predicted (Table 3).

The standing litter in this Liquidambar-dominated
forest is somewhat less than 1 kg/m? (R. Bracho, V. Sosa,
& H. Puig, pers. comm.), whereas the total organic matter
(i.e., above-ground litter plus organic matter in the soil
profile) is approximately 40 kg/m (considering an A ho-
rizon 0.20 m thick, with bulk density 1 g/cm?* and 20%
organic matter). It is clear that, whereas Model 4 predicts
an accumulation value near (within an order of magnitude)
the above-ground litter value, Model 3 predicts an ac-
cumulation value 30 times higher than the standing litter
in the field and still slowly increasing. The value predicted
by Model 3, however, approaches the total organic matter
on and within the soil.

It seems contradictory at first that two models which
adequately describe the process of decomposition predict
such different values of litter accumulation on the ground.
The reasons for this can be seen in Figure 2 and in the
theoretical assumptions of the respective models. Model
3 assumes that the decomposition rate will decrease as
more of the original litter is decomposed, approaching zero
as the more refractory portions become concentrated. In
reality, these last litter fractions will disappear into the soil
by fragmentation and leaching at a low but constant final
rate, and will tend to accumulate within the profile as
humic substances (note that more than 95% of soil organic
matter is within the profile, and less than 5% forms the
surface litter). Because Model 3 assumes that the final rate
approaches zero, it erroneously predicts the above-ground
accumulation of the more recalcitrant fractions. Model 4,
on the other hand, assumes that the rate will decrease

(19)

until practically all the labile compartment has been de-
composed. Then the remaining fraction (i.e., the refractory
material) will decompose at a constant final rate (Fig. 2).
This assumption will tend to exclude the more refractory
fractions, which are leached from the surface litter into
the soil profile.

A differential equation model that includes both a
nonlinear decrease in relative decomposition rate and a
final constant litter disappearance rate can be postulated
as 1.dx_ —{a + A(X/X,)"}, whete 4 is the final rate,
(@ + k) is the initial (= 0) rate, and 4 is the shape
parameter. Unfortunately, we have found no simple way
to integrate this equation, which has to be solved nu-
merically.

DISCUSSION

Under laboratory conditions, the relative decomposition
rates of the three litter types were not constant but pro-
gressively decreased over time as the more labile parts
decomposed. Moreover, the decrease in relative decom-
position rate as a function of the remaining litter fraction
was strongly nonlinear. Both Model 1 (the negative ex-
ponential) and Model 2 were inadequate for describing
licter decomposition under simulated field conditions.
Model 3 (nonlinear decrease in relative decomposition rate)
and Model 4 (two-compartment, or double exponential
model) reflected the mass losses of the three different types
of litter in an adequate manner.

Model 4 (the double exponential) accurately described
the decomposition process. However, the division of litter
into two compartments that are not chemically defined or
measured may not be a realistic assumption. Minderman
(1968) showed that the resistance to decomposition of the
different litter compounds is highly variable. It seems,
therefore, that there is little biological support for dividing
organic matter into two unique fractions, each with a
constant decomposition rate. The good fit of this model
is probably due more to the higher number of parameters
in Eq. (7) than to ecologically realistic assumptions.

With only two parameters, Model 3 provides a flexible
and accurate relation. The shape parameter (%) confers a
nonlinear change in the relative decomposition rate and
represents the effect of the resource quality on the decom-
position process. This model is a simple alternative for
describing the mass losses of decomposing litter through
time.

Single-parameter models often fail to adequately de-
scribe decomposition data. There is cleatly a tradeoff be-
tween the simplicity of the model and the accuracy of its
predictions. Adding additional parameters almost always
improves the fit, but these increasingly complex models
become less and less parsimonious.
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According to Levins (1968), a model is built by a
process of abstraction (i.e., postulating hypothesis) that
defines a set of sufficient parameters on the level of study,
and a process of simplification that is intended to leave
intact the essential aspects of reality while removing dis-
tracting elements. Hence, when fitting these different
models, we are in effect testing different hypotheses with
regard to the nature of the decomposition process. (It is
interesting to note in this sense that the double exponential
model gave a markedly better fit only on the Pranus fruits,
where the two-compartment assumption is more plausi-
ble.) Every model can be considered a sample from a
universe of possible models, differing from the rest in its
degree of realism, precision, and generality. Maximizing

one of these properties usually implies sacrificing another
(Levins 1968). There is probably no such thing as the
“best”” decomposition model but, rather, different models
with different underlying assumptions which can be tested
by analyzing the fit of the model to the data.
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